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1 Overview

Main Physical Results:

2

1.

At certain regions in its moduli space of vacua, (four-dimensional) N' = 2, SU(3) Super-Yang-Mills
(SYM) possesses a density of states (DOS) that grows exponentially with the mass. Moreover, this
exponential growth is contributed by BPS states.

The BPS-indices (a weighted count of BPS states) in a large class of N = 2 supersymmetric field theo-
ries (theories of class S[Ak_1]) are determined by algebraic equations. From a naive standpoint, these
algebraic equations seem to suggest that an exponential growth in the DOS is a “generic” phenomenon.

Why is this interesting?

1.

Exponential-growth in DOS in a field theory seems to violate standard thermodynamic arguments,
unless the BPS states contributing to the growth are allowed to grow to arbitrarily large sizes (“BPS
Giants”).

Exponential growth of DOS = “Hagedorn” limiting temperatures = possible interesting phase tran-
sitions.

In SU(3) SYM, there may be infinitely many Hagedorn temperatures that appear in the theory (cor-
responding to different families of BPS states, each labeled by a rational number).

Broken Expectations

Start with a UV Complete, field theory T. (e.g. asymptotically free) ~» large-energy phenomena are well-
described by a Conformal Field Theory (CFT).

Now imagine a (d — 1,1)-CFT (i.e. a d-dimensional CFT on Lorentz-signature spacetime) confined to a box
of volume V and heated up to a temperature T' (with respect to a particular splitting of space and time).



Via dimensional analysis

Energy in box = E(V,T) = aVT*?
Entropy = S(T,V) = gVT9!

for some constants a, 8 > 0. Thus,
S(E,V) = gV¥ipd=1/d
(where k = Ba(l=D/4). But, then
# of states at Energy E in CFT = Ce5(FV) = CerV' /BT

Thus, in the theory T,, the asymptotic growth of the number of states in the theory of mass < M should
be ¢; exp(ca E3/*) in dimension d = 4.

3 Motivation

Here is some (personal and probably ahistorical) motivation for why one would want to study BPS states in
the first place:

1. Caveman-question: What is the 1-particle spectrum of some field theory T, ¢ (Typically this is a hard
question.)

2. Sophisticated-question: Embed T, into a family of theories:
T, ~» Family of theories {T,}uem

where M is some “moduli-space” (e.g. the moduli space of vacua). Then ask “What is the 1-particle
spectrum that is stable’ as we vary u € M%7

In the context of four-dimensional N' = 2 Field Theories: a (maybe partial) answer to the second question
is the BPS spectrum.

4 Recollections on four-dimensional V' = 2 Field theory

4.1 BPS Irreps

e Four-dimensional A/ = 2 Field Theories ~ Unitary representations of the N = 2 Super-Poincaré
Algebra: 8 real odd-supercharges + a (complex-valued) central element Z in addition to the Poincaré
algebra.

e Irreps are classified by Spin J? € %Z, Mass M? > 0, and Central Charge Z c C.
e In any irrep we must have

M > |Z].
e BPS irrep: 1-particle irrep with |Z] = M.

4.2 Low Energy Effective Field Theory
Typically, at low energies, the effective field theory (EFT) is an N' = 2 abelian gauge theory:

1 Assuming we have some notion of parallel transport on the moduli space.



4.2.1 Data Seen by the Low-Energy EFT

1. B: Coulomb branch (part of the space of vacua for the field theory)

2. T — B: local system of possible electric/mag./flavour charges T, for u € B is the lattice of charges
over u. (e.g. I'y 2 7Z x Z for a pure U(1) gauge theory). Each T, is equipped with an antisymmetric
pairing (-, -),, : [®2 — Z (the pairing between electric and magnetic charges).

3. Z, : fu — C the central charge function. (From the charge in fu, one can determine the central
charge.)
4.2.2 BPS States

BPS states are massive excitations of the full theory T that remain “stable” as we vary u € B.
We define a counting-index (the BPS-index/Second-Helicity Supertrace/Donaldson-Thomas invariant):

Q(~;u) = Weighted Count of BPS states of charge v € T, in T, (theory with vacuum u € B)
= Weighted-Super-Trace [”Hé}‘s’art ('y)}

o Q(v;u) is piecewise constant on u € B; jumps across (real-codimension 1) walls of marginal stability
on B.

e This jumping behaviour is well-understood via the Kontsevich-Soibelman Wall-Crossing-Formula (Kontsevich-
Soibelman, Gaitto-Moore-Neitzke) = in principle, if the location of all walls are known, then knowing
Q(7; ux) at some point u, € B determines Q(vy; u) for all u € B.

Example Seiberg/Witten: N =2, SU(2) SYM
Techniques for computing Q(v; u) at a point u € B:

1. BPS Quivers (requires partial knowledge of the BPS spectrum): nodes are labelled by specific collection
of charges {v;}7; C I', and the number of arrows between a pair of nodes (including their direction)
is specified via the pairing (-,), : [$? — Z.

2. Spectral networks (Theories of Class S[Ax_1])

5 The m-Kronecker Quiver

Suppose we know that T, contains two so-called “hypermultiplets” of charge 1, v2 € fu such that (y1,72), =
m > 0. This corresponds to the m-Kronecker quiver:

@

|

m arrows

e Using quiver-technology, when m > 3 we can predict that T, contains an extremely large family of
BPS states? of charges ay; + by, where a/b is a rational number on some interval: the set of phases of
BPS states densely fill an arc on the circle.

2Technically one also needs to check that the stability parameter on the quiver, specified by the central charge, is in the
“non-trivial” region of the m-Kronecker stability parameter space.



e An exponential growth of BPS indices for states of charge n(y; + 72) (a corollary of the algebraic
equations conjectured by Kontsevich-Soibelman and proven by Reineke):

Q(n(y1 +72)) ~ (_1)mn+1Kmn—5/2ecmn

where

1 m
m— 1\ 2m(m — 2)

Cm = log |:(m _ 1)2(m—1)2m(m _ 2)m(m—2):| .

K, =

Certain closely related results (T. Weist’s asymptotics of Euler Characteristics) seem to suggest that
this exponential growth will occur for most (if not all) BPS states whose phase lies on the dense arc.

This is in direct conflict with the thermodynamic prediction on asymptotics:
e The mass of a BPS state of charge n+ is:
Eny = |Zny| = Inl|Z,| = In|E,.

e The number of BPS states of charge ny is bounded below by 4|Q(nvy)|:

|Q(ny)] < % {# of BPS states of charge nvy} .

Hence the large n asymptotics of “# of BPS states of charge ny” grows at least as fast as
Kmn—S/Qecmn; (1)

which grows strictly faster than """ for any constant C, i.e. the ratio of (1) to exp(Cn®/*) tends to

infinity for any C. Thus, naively, the m-Kronecker quiver cannot possibly occur as a BPS (sub)-quiver.

6 Spectral Networks

6.1 Theories of class S[Ax_1]

Riemann Surface C' + D
(Decorated) Marked Points
on C + Integer K > 1

_ 1 o «“s
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lar punctures” at 0 and co

The Coulomb branch B of a theory of class S[Ax_1] is a (complex) dimension K — 1 complex vector
space.

Four-Dimensional N' = 2
Field Theory S[Ax_1,C,D]

E.g,

e Spectral networks are decorated, directed graphs on C.

e They are produced by differential equations.



System of ODEs on C whose
[ Pointu € B; ¥ € St integral curves produce a
spectral network Wy (u)

e Degenerate networks — very special networks with integral curves moving in “opposite directions” that
collide — correspond to BPS states:

BPS State in theory T, with charge Degenerate Spec-
v € Ty such that arg(Z,) = o tral network Wy (u).
o Off of Walls of marginal stability all BPS States of phase ¢ have proportional charges. Hence, a
degenerate network Wy (u) is representative of all BPS states of charge ny for v € Ty, a “primitive”

charge with arg(Z,) = 9, and n € Z any integer. In fact, Wy(u) encodes the information about all
BPS indices Q(ny).

Examples of degenerate spectral networks that appear when K = 2:

6.2 Determining Q(nvy)

Central to the spectral network machinery is the generating function:
o0
T, = [ (0 - (F)rem) e
n=1

Then, given the degenerate part of the network (A finite directed graph in all known examples), there is a
combinatorial algorithm for producing an algebraic equation satisfied by T":

Degenerate Part of Net-
work W representing BPS

states of charge {nvy}nez

Algebraic equation
F(T) = 0, where F € Z[7]

Examples
1. Hypermultiplet network: T'=1 — z, i.e.
;o n=1
QUW):{ 0, n>1
2. Vectormultiplet network: 7' = (1 — 2)72, i.e.

-2, n=1;
Q(H’Y):{ 0, n>1.

3. m-herd: T = P™ where P satisfies the equation F(P) = P — 2P(Mm=D* _1 — (. There are infinitely
many non-vanishing Q(ny) corresponding to the Q(n(y1 + 72)) associated to the m-Kronecker Quiver
= exponential degeneracy.

4. (3,2|m)-herd: T satisfies a complicated degree 39 polynomial equation; corresponding BPS indices are
Q(n(ay; + by2)) and have large n asymptotics of the form Kn~=%/2 exp(cn).

Corollary 6.1 The generating function T is an algebraic function over Q = it is a holomorphic function
for z in some neighbourhood of C; it analytically continues to a Riemann surface (which we can determine
from the polynomial F € Z[z]).



With a bit more work (and information) one can deduce the following;:

Corollary 6.2 BPS indices coming from spectral networks (with finite degenerate parts) have asymptotics
of the form

k n
1
Q(ny) ~ Cn® <>
)~y (o
where a € Q, and the p; € C are all algebraic numbers with the same modulus |p;| < 1.

Assuming the most generic possible polynomial F, we expect asymptotics of the form

Q(ny) ~ Cn=5/? (;)

where p € QN (—1,1); hence, from this naive perspective, we should almost always expect an exponential
growth of BPS states.



