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Abstract. We define the notion of a measure family: a pre-cosheaf of
finite measures over a finite set; every joint measure on a product of
finite sets has an associated measure family. To each measure family there
is an associated index, or “Euler characteristic”, related to the Tsallis
deformation of mutual information. This index is further categorified by a
(weighted) simplicial complex whose topology retains information about
the correlations between various subsystems.

1 Introduction

Questions relating to the independence of random variables have a deep rela-
tionship to questions of topology and geometry: given the data of a multipartite,
a.k.a. “joint” measure, there is an emergent “space” that encodes the relation-
ship between various subsystems. Topological invariants of this emergent space
capture non-trivial correlations between different subsystems: this includes nu-
merical invariants—such as the Euler characteristic—which roughly indicate how
much information is shared characteristic, as well as “higher” invariants—such as
cohomology—that capture what information is shared. In [11] these ideas were
explored, using a language engineered for an audience interested in the purely
quantum regime, i.e., “non-commutative” measure theory. This note provides a
sketch of the categorical underpinnings of these ideas in the opposite “classical”
or “commutative” extreme, focusing on finite atomic measure spaces for brevity.
Some of these underpinnings are partly outlined in the recorded talks [12,13].

The majority of this note is dedicated to formalizing the working parts that
underlie the “commutative diagram” in Figure 1. The word “space” is taken to
mean a (semi-)simplicial measure or a (weighted semi-)simplicial set, and the
grayed out mystery box indicates a suspected “weighted” version of cohomology
that may provide a novel measure of shared information. The classical picture
that is presented here is unified with the quantum picture of [11] using the
language of von Neumann algebras.1 A reader wishing to learn how this fits into
a larger picture should consult [11] and the talks [12,13]. The upcoming paper [9]
is a related spin-off of the categorical and W∗-algebraic underpinnings of some
ideas discussed here.

Our categorical perspective of measures on finite sets has close ties to the work
of Baez, Fritz, and Leinster [2, 3], and the quantum mechanical generalization is
1 See [15] for a precise categorical equivalence between commutative W∗-algebras and

(localizable) measurable spaces.



Multipartite
Measure

“Space”

?

Graded
Vector Space

Holomorphic
Functions in q

R Z

Mutual
Information

Index

Cohomology

Euler
characteristic

q →
0d

dq
|q=1

Fig. 1. A “commutative diagram” summarizing the big picture behind the definitions
and results stated in this note.

related to the work of Parzygnat [14]. The homotopical or homological perspective
has strong relations to the work of Baudot and Bennequin [4]; Vigneaux [18];
Sergeant-Perthuis [16]; and Drummond-Cole, Park, and Terilla [7,8]. Ideas around
the index (§4.3) bear relation to the work of Lang, Baudot, Quax, and Forré [10].

2 Preliminaries

In this note, a (finite) measure µ consists of the data of a finite set Ωµ and
a function Subset(Ωµ) → R≥0 that evaluates to zero on ∅ and satisfies the
additivity condition: the value on a subset U reduces to the sum of its evaluation
on points of U . In a mild abuse of notation, we use µ to denote the function
Subset(Ωµ)→ R≥0. We allow for measures to be identically zero on a set, and
also allow for the empty measure: the unique measure on the empty set.2

If µ and ν are measures with Ωµ = Ων = Ω we write µ ≤ ν if µ(U) ≤ ν(U)
for all U ⊆ Ω. Given a measure µ, and a function between sets f : Ωµ → Γ , the
pushforward measure f∗µ is the measure with set Ωf

∗
µ := Γ and (f∗µ)(U) :=

µ[f−1(U)] for any U ⊆ Γ . When f∗µ = ν we call f measure-preserving.

3 The Category of Finite Measures

Definition 1. Meas is the category with objects given by finite measures, and a
morphism f : µ→ ν defined by an underlying function on sets f : Ωµ → Ων such
that f∗µ ≤ ν.

2 The empty measure corresponds to the zero expectation value on the zero algebra.



Remark 1. Meas utilizes the relation ≤ to define a larger class of morphisms
than the similarly named category in the work of Baez-Fritz-Leinster [2, 3], who
define morphisms as measure-preserving functions. Nevertheless, isomorphisms
are measure-preserving bijections (Lemma 2); so the notion of isomorphism
coincides with that of Baez-Fritz-Leinster.

Lemma 1. Meas has:

1. A symmetric monoidal structure induced by the product of underlying sets:
Let µ and ν be measures, then µ⊗ ν is the product measure on Ωµ ×Ων .

2. Coproduct ⊞ induced by the disjoint union
∐

of sets: for any measures µ
and ν, Ωµ⊞ν := Ωµ

∐
Ων and (µ ⊞ ν)(U) := µ(U ∩Ωµ) + ν(U ∩Ων) for any

U ⊆ Ωµ

∐
Ων .

Proof. Verifying that ⊗ provides a symmetric monoidal structure is straight-
forward. To see that ⊞ is a coproduct, note that the inclusion map ιµ : Ωµ →
Ωµ

∐
Ων defines a valid morphism ιµ : µ→ µ ⊞ ν as (ιµ)∗µ = µ ⊞ 0Ων ≤ µ ⊞ ν.

Similarly, ιν : Ων → Ωµ

∐
Ων defines a morphism ιν : ν → µ ⊞ ν. The universal

property follows in part by the fact that
∐

is a coproduct for sets.

Remark 2. The operation ⊗ is a categorical product in Meas, but it is not a
categorical product in the quantum-classical enlargement of Meas.

Remark 3. The fact that ⊞ is a coproduct relies on the presence of non-probability
measures and maps that are not measure preserving.3

3.1 The Rig of Isomorphism Classes of Measures

The following lemma is straightforward.

Lemma 2. f : µ → ν is an isomorphism if and only if f is a bijection and
f∗µ = ν.

Remark 4. One can generalize the class of morphisms in Meas to the class of
stochastic maps that manifest algebraically as completely positive contractions
on ∗-algebras of C-valued random variables. Even in this situation, isomorphisms
would still be measure-preserving bijections.

The collection of isomorphism classes [Meas] of Meas is a set.4 Moreover,
letting [µ] denote the isomorphism class of an object µ, we can define binary
operations + and · by: [µ] + [ν] := [µ ⊞ ν] and [µ] · [ν] := [µ⊗ ν] for any pair of
objects µ and ν. These equip [Meas] with the structure of a commutative rig: a
3 If one works with probability measures and measure-preserving maps, ⊞ instead

manifests as an operadic structure which encapsulates the ability to take convex
linear combinations of probability measures; this is the approach taken by [6].

4 It is easy to write down a natural bijection of [Meas] with
∐∞

n=0(R≥0)×n, taking
R×0 := {⋆} to correspond to the empty measure. This observation can be used to
equip [Meas] with a topology as in [3].



commutative ring dropping the condition that there are additive inverses (a ring
without “negatives”). The empty measure ∅ provides an additive (+) unit, and
the unit measure on the one-point set provides a multiplicative (·) unit.

The following theorem is a take on the observations of Baez-Fritz-Leinster
in [2].
Theorem 1. Let O(C) denote the ring of holomorphic functions on C. There is
a unital homomorphism dim: [Meas]→ O(C), defined on any [µ] by:

dim[µ] : C −→ C

q 7−→
∑

ω∈Ωµ

µ({ω})q =: dimq[µ],

where, for any λ ≥ 0, λ0 := limq→0 λq: i.e., λ0 = 1 if λ > 0 and 00 := 0.

Remark 5. There is a reflective full subcategory of Meas generated by “faithful”
measures: measures µ such that µ({ω}) > 0 for all ω ∈ Ωµ. The homomorphism
dim is an isomorphism on this full subcategory (see [2]).

Remark 6. An extension of Theorem 1 to finite-dimensional quantum-classical
systems appears in the constructions of [11, §8.4.1].

Remark 7. The parameter q in dimq has several potential interpretations:
1. As a character of a continuous complex irreducible representation of the

multiplicative group R>0: every such representation is of the form mq : R>0 →
Aut(C) for some q ∈ C such that mq(λ)z = λqz.

2. As a (negative) inverse temperature: dim−β [µ] is the partition function∑
ω∈Ωµ

e−βE(ω), associated to the classical system with state space Ωµ and
energy function E : Ωµ → R given by E(ω) := log[µ({ω})].

3. As the parameter defining a q-norm for an Lq space.
A detailed justification for the first and third interpretation is left for future work.
The second interpretation is is also discussed in [2].

4 Measure Families

Definition 2. A measure family μ is the data of a finite set Pμ and a functor

Subset(Pμ) −→ Meas,

where Subset(Pμ) is the category with objects given by subsets of Pμ, and a unique
morphism T → V if and only if T ⊆ V . Analogous to the situation for measures,
we abuse notation and denote the functor by μ.

Given a function between finite sets f : Pμ → Q, we can define the pushforward
of a measure family μ as the measure family f∗ μ : Subset(Q)→ Meas defined by

(f∗ μ)(T ) := μ[f−1(T )]

for every T ⊆ Q. Given two measure families μ and ν with P = Pμ = Pν, we say
μ ≤ ν if and only if Ωμ(T ) = Ων(T ) and μ(T ) ≤ ν(T ) for every T ⊆ P .



Definition 3. The category of measure families MeasFam is the category with
objects given by measure families, and a morphism f : μ→ ν defined by a function
f : Pμ → Pν such that f∗ μ ≤ ν.

There are various versions of “lifts” of the monoidal operations ⊞ and ⊗ on
Meas to monoidal operations on MeasFam; the following versions will be useful.

Definition 4. Let μ and ν be measure families, then μ⊞ ν and μ⊗ ν are measure
families with Pμ⊞ ν and Pμ⊗ ν both defined as the disjoint union Pμ

∐
Pν. On

a subset T ⊆ Pμ
∐

Pν we define (μ⊞ ν)(T ) := μ(T ∩ Pμ) ⊞ ν(T ∩ Pν), and
(μ⊗ ν)(T ) := μ(T ∩ Pμ)⊗ ν(T ∩ Pν). The definitions on inclusions follow from
the obvious induced morphisms.

Definition 5. Let μ be a measure family, and T ⊆ Pμ; then μ |T : Subset(T )→
Meas denotes the obvious restriction. We say μ is a 2-measure if μ(∅) is the empty
measure and there is an isomorphism μ ∼−→⊞p∈P μ |{p}.

2-measures are measure families where all global data is given by gluing together
local data.5 This is a categorified notion of the additivity condition for a measure.

4.1 2-Measures from Measures

Let µ be a measure, then there is a measure family Rµ : Subset(Ωµ)→ Meas given
by the restriction of µ to subsets of P . On objects, it acts in the following way: for
T ⊆ Ωµ nonempty, Rµ T := µ|T , where µ|T the restriction of µ to subsets of T ; to
the empty set we assign the empty measure. To every inclusion T ⊆ V , it assigns
the morphism Rµ T → Rµ V whose underlying map is the inclusion map T ↪→ V .
The additivity condition on a measure requires that for any subset T ⊆ P the
identity map T → T induces an isomorphism of measures: Rµ T

∼−→ ⊞t∈T Rµ({t}).
As a result, Rμ is a 2-measure. Conversely, any 2-measure that reduces to a
coproduct of measure families on one point sets defines a measure on Pμ.

4.2 Measure Families From Multipartite Measures

Definition 6. A multipartite measure µ over a finite subset P is a collection of
sets {Ωp}p∈P , and a measure µP : Subset(

∏
p∈P Ωp)→ R≥0.

Given a multipartite measure µ over P , define ΩT as
∏

t∈T Ωt if T ̸= ∅, and
the one-point set {⋆} if T = ∅. Let p

T
: ΩP → ΩT denote the projection map if

T ̸= ∅ and the map to the point otherwise. Then to each subset T ⊆ P , we can
assign a reduced (or “marginal”) measure µT := (p

T
)∗µP .

The data of the reduced measures collects into a functor Subset(P )op →
Meas that takes a subset T of P to µT , and takes an inclusion T ⊆ V to the
morphism µV → µT provided by the projection ΩV → ΩT . Because this functor
is contravariant, it is not a measure family; however, we can make it one by
5 In some sense a 2-measure is an “acyclic cosheaf” of measures.



composing with the functor (−)c
P : Subset(Ω)op → Subset(Ω) that takes a subset

of P to its complement. The result is a measure family

Aµ : Subset(P ) −→ Meas,

which acts on objects by taking T to µT c . Factorizability questions about µ are
equivalent to factorizability questions about Aμ: e.g. µP =

⊗
p∈P µp, if and only

if there is an isomorphism Aµ ∼−→
⊗

p∈P Aµ|{p}.

4.3 The Index

Definition 7. Let μ be a measure family. The index of μ is defined as the
holomorphic function

X[μ] :=
|Pμ|∑
k=0

(−1)k dim

⊞
|T |=k

μ(T c)

 .

The evaluation of X[μ] at q ∈ C is denoted as Xq[μ].

The complement in the definition is for convenience;6 without it, the definition
would be the same up to the overall sign (−1)|Pµ|. Theorem 1 and manipulations
of the inclusion-exclusion relation defining the index lead to the following results.

Theorem 2. The index only depends on isomorphism classes of measure families;
moreover, X[μ⊗ ν] = X[μ]X[ν] for any measure families μ and ν.

Proposition 1. If μ and ν measure families with Pμ and Pν non-empty, then
Xq[μ⊞ ν] = 0. In particular, X vanishes on any 2-measure μ with |Pμ| ≥ 2.

According to Proposition 1, a non-vanishing index indicates that there is an
obstruction to an “additive” (⊞) descent of data. For a multipartite measure
µ, we are more interested in an obstruction to a “multiplicative” (⊗) descent of
data, i.e., a failure to factorize. As the discussion below indicates, this can be
detected by looking at the derivative of q 7→ Xq[Aµ] at q = 1 (where X1[Aµ] = 0).

Tsallis Mutual Information and the q → 1 Limit For a multipartite
measure µ we have:

Xq[Aµ] =
∑
∅⊆T⊆P

(−1)|T |
( ∑

ω∈ΩT

µT ({ω})q

)
.

If µ is a multipartite probability measure (µP (P ) = 1), then a bit of manipulation
demonstrates that Iq[µ] := 1

q−1Xq[Aµ] can be rewritten as:

Iq[µ] =
∑
∅̸=T⊆P

(−1)|T |−1STs
q (µT ),

6 One can define an index with respect to any cover of Pµ; but our primary interest
will be the cover that is the complement of the finest partition of Pμ.



where STs
q (µ) := 1

q−1 [1 −
∑

ω∈Ω µ({ω})q] is the Tsallis deformation of mutual
information. Multipartite mutual information is recovered in the limit that q → 1.
If µ is a multipartite measure on a one-element set, then Iq[µ] is simply the
Tsallis entropy. This observation can be combined with multiplicativity of the
index (Theorem 2), to demonstrate that the multipartite mutual information of
a multipartite measure on P must vanish if the measure factorizes with respect
to any partition of P : see [11, §8.5].

The q → 0 Limit dim0 µ, which is limq→0 dimq µ by definition, is an integer
counting the number of points of Ωµ with non-vanishing measure. Thus, for μ
any measure family, X0[μ] is an integer. This is a hint that X0[μ] is related to the
Euler characteristic of a topological space.

4.4 (Semi-)Simplicial Objects

By viewing a measure family μ as a pre-cosheaf and applying Čech techniques with
respect to a cover of Pμ, we can construct an (augmented)7 semi-simplicial object
in Meas: an (augmented) semi-simplicial measure. In this note, we specialize to
the “complementary cover” {{p}c}p∈Pμ of Pμ and choose a total order on P .8
Using the fact that the intersection of complements is the complement of a union,
the non-trivial part of the resulting augmented semi-simplicial measure can be
summarized by a diagram in Meas of the form:

Degree −1︷ ︸︸ ︷
μ(∅c) ←−

Degree 0︷ ︸︸ ︷
⊞
|T |=1

μ(T c) ←−←− · · ·
←−
←−
...
←−︸︷︷︸

n− 1 arrows

Degree n− 2︷ ︸︸ ︷
⊞

|T |=n−1

μ(T c)
←−
←−
...
←−︸︷︷︸

n arrows

Degree n− 1︷ ︸︸ ︷
μ(P c

μ
) , (1)

where: n = |P |, degree ≥ n components are taken to be the empty measure, and
the arrows satisfy the face-map relations of an augmented semi-simplicial object.
The holomorphic function −X[μ], where X[μ] is the index of Definition 7, can be
thought of as the graded dimension or “Euler characteristic” of (1).

Remark 8. In the special case that μ = Aµ for a multipartite measure µ over P ,
the complements disappear: for any T ⊆ P , we have Aµ(T c) = µT (the reduced
measure on

∏
t∈T Ωt). With this specialization, diagram (1) becomes:

Degree −1︷︸︸︷
µ∅ ←−

Degree 0︷ ︸︸ ︷
⊞
|T |=1

µT
←−
←− · · ·

←−
←−
...
←−

Degree |P | − 2︷ ︸︸ ︷
⊞

|T |=|P |−1

µT

←−
←−
...
←−

Degree |P | − 1︷︸︸︷
µP , (2)

where, as before, we ignore the empty measures in degree ≥ |P | components. The
augmentation map into the degree −1 component has underlying map given by
7 Augmented in this context means there is an additional degree −1 component and a

single map from the degree 0 component to the degree −1 component.
8 All interesting quantities are equivariant under change of total order.



the unique map
∐

p∈P Ωp → {⋆} = Ω∅, and the remaining face maps are induced
by projection maps composed with inclusions into disjoint unions. For instance,
if P = {1, 2}, the two face maps out of the degree 1 component have underlying
maps given by the following compositions (letting i ∈ {1, 2}):

Ω1 ×Ω2
project−−−−→ Ωi

include
↪−−−−→ Ω1

∐
Ω2.

Remark 9. One can also apply Čech techniques to produce (augmented) simplicial
objects rather than (augmented) semi-simplicial objects (see, [5] and [1, §25.1
- 25.5]). Simplicial objects include additional “degeneracies” and extend the
diagram (1) infinitely far to the right with possibly non-empty measures. The
invariants of the underlying measure family that are discussed in this note—Euler
characteristics, indices, and cohomology—can be recovered by passing through
either version: yielding results that are equivalent, or canonically isomorphic.
This note focuses on the semi-simplicial version for pedagogical reasons and
immediate connections to the computational underpinnings of [11].

(Semi-)Simplicial Sets From the semi-simplicial measure (1), one can derive
an (augmented) semi-simplicial set: a slight generalization of a simplicial complex.
Indeed, there is a functor:

S : FinMeas −→ FinSet

that assigns to a measure µ, its support:

S µ := {ω ∈ Ωµ : µ(ω) ̸= 0},

and assigns to a morphism f : µ → ν, the morphism S f : S µ → S ν whose
underlying function on sets is the restriction f |S µ: a valid assignment as f(S µ) ⊆
S ν due to the condition f∗µ ≤ ν. Applying S to our semi-simplicial measure, we
obtain an augmented semi-simplicial set ∆[μ] whose non-trivial part is summarized
by the following diagram in FinSet (with n = |Pμ|):

Degree −1︷ ︸︸ ︷
S μ(∅c) ←−

Degree 0︷ ︸︸ ︷∐
|T |=1

S μ(T c) ←−←− · · ·
←−
←−
...
←−

Degree n− 2︷ ︸︸ ︷∐
|T |=n−1

S μ(T c)
←−
←−
...
←−

Degree n− 1︷ ︸︸ ︷
S μ(P c

μ
) .

The Euler characteristic of ∆[μ], denoted χ(∆[μ]), is the negative of the q = 0
evaluation (or q → 0 limit) of the index:

χ(∆[μ]) :=
|Pμ|−1∑
k=−1

(−1)k

 ∑
|T |=k+1

| S μ(T c)|

 = −X0[μ].

Geometric Realizations Specialize to μ = Aµ, and define ∆µ := ∆[Aµ], which
is summarized by the diagram:

S µ∅←−
∐
|T |=1

S µT
←−
←− · · ·

←−
←−
...
←−

∐
|T |=|P |−1

S µT

←−
←−
...
←−

S µP .



Let ∆′µ denote the semi-simplicial set obtained by removing the augmentation
map9 into S µ∅. To construct the geometric realization |∆′µ|, observe that 0-
simplices are given by points ω ∈

∐
p∈P Ωp such that µ{p}({ω}) ̸= 0 for every

p ∈ P . Higher k-simplices are given by collections of 0-simplices with non-
vanishing measure as computed with respect to the reduced measure⊞|T |=k+1 µT .
The geometric realization is simple: first identify P = PAµ with the set {1, · · · , n},
then for each (ω1, · · · , ωn) ∈

∏n
i=1 Ωi with µ({(ω1, · · · , ωn)}) ̸= 0, draw an

(n− 1)-simplex with vertices ω1, ω2, . . . , ωn.
When µ is a bipartite measure on the set P = {1, 2}, the geometric realization

|∆′µ| might look familiar: it is a bipartite (directed) graph whose vertices are col-
ored by points in P . A bit of experimentation demonstrates that the connectivity
of this graph is closely related to the correlations between “subsystems” 1 and 2.

Cohomology If we apply the functor10 HomFinSet(−,C) : FinSetop → FinVectC
to ∆μ, we obtain a cosimplicial vector space; this can can be turned into a cochain
complex by taking alternating sums of face maps. For μ = Aµ, this complex looks
like (letting C[−] be shorthand for HomFinSet(−,C)):

Degree -1︷︸︸︷
C −→

Degree 0︷ ︸︸ ︷∏
|T |=1

C[S µT ] −→

Degree 1︷ ︸︸ ︷∏
|T |=2

C[S µT ] −→ · · · −→
Degree |P | − 1︷ ︸︸ ︷
C[S µP ] −→ 0 −→ · · ·

The cohomology H• of this cochain complex is the reduced simplicial cohomology
of the geometric realization |∆′µ| with coefficients in C. Representatives of Hk

can be interpreted as assignments of C-valued random variables to all subsystems
(subsets of PAµ) of size k + 1, such that these assignments have linear correlations
that do not reduce to correlations on subsystems of size k. Random variables on
the subsystem of size 0, coming from the degree −1 component, are the constant
random variables. For a bipartite measure on P = {1, 2}, a representative of
a non-zero element in H0 is a pair (r1, r2) of random variables such that (for
i ∈ {1, 2}): ri is a random variable on Ωi that is not almost everywhere (a.e.)
equal to zero, ri is non-constant, and r1 ⊗ 1− 1⊗ r2 is a.e. equal to zero with
respect to the measure on Ω1×Ω2. See [11, §7.4] and [11, §6.5] for interpretations
of the quantum mechanical analogs of H0 and higher Hk; these interpretations
can be translated into precise statements for the classical context of this note.11

Remark 10. As a source of new invariants of multipartite measures, one might
also study the cohomology ring of |∆µ| with coefficients in a commutative ring
R: a graded R-algebra. In fact, the story in this section can be souped-up to use
part of the monoidal Dold-Kan correspondence in order to produce a differential
graded R-algebra from a measure family.
9 If µP does not vanish everywhere, then | S µ∅| = |{⋆}| = 1. Consequently, one can

show that X0[Aµ] = 1 − χ(∆′
μ).

10 This is a specialization of a functor from (localizable) measurable spaces to the Banach
space underlying the W∗-algebra of essentially bounded measurable functions.

11 The classical analog of the GNS and the commutant complexes of [11] both reduce
to the alternating sum of face maps complex that is used in this note.



5 Some Future Directions

The reduced measures associated to a multipartite measure supply a “weight”
to the simplices of its associated semi-simplicial set. Thus, in some sense, the
index is a weighted Euler characteristic. It is natural to suspect that there is a
weighted version of cohomology categorifying the index for all values of q: the
mystery box of Figure 1. Moreover, the existence of a canonically associated
semi-simplicial set to a multipartite measure may open the door to measures of
shared information using combinatorial invariants, such as the Stanley-Reisner
ring (the “face ring of a simplicial complex” in [17]).
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