Higher Information The untold topological secrets of measures and states

Tom Mainiero

St. Joseph's University, NY

November 8, 2023

- Baudot-Bennequin: The Homological Nature of Entropy;
- Vigneaux: The structure of information from probability to homology;
- Bennequin, Sergant-Perthuis, Vigneaux: Extra-fine sheaves and interaction decompositions;
- Baez-Fritz-Leinster: Entropy as a Functor;
- Hamilton/Leditsky: Probing multipartite entanglement through persistent homology;

What's the Big Idea?

Multipartite _____ "Spaces"

E.g.:

- (Purely Classical): Bipartite joint measures
 - $\widehat{\mu} \colon \Omega_{\mathsf{A}} \times \Omega_{\mathsf{B}} \longrightarrow \mathbb{R}_{\geq 0},$
 - Ω_i (finite) sets.
- (Purely Quantum): Bipartite pure states
 - $\psi \in \mathcal{H}_{\mathsf{A}} \otimes \mathcal{H}_{\mathsf{B}},$
 - $\mathcal{H}_{\mathsf{A}},\,\mathcal{H}_{\mathsf{B}}$ Hilbert spaces.
- States assigned to causal diamonds on spacetime (local nets);

What's the Big Idea?

Multipartite Measures

E.g.:

- (Purely Classical): Bipartite joint measures
 - $\widehat{\mu} \colon \Omega_{\mathsf{A}} \times \Omega_{\mathsf{B}} \longrightarrow \mathbb{R}_{\geq 0},$
 - Ω_i (finite) sets.
- (Purely Quantum): Bipartite pure states
 - $\psi \in \mathcal{H}_{\mathsf{A}} \otimes \mathcal{H}_{\mathsf{B}},$
 - $\mathcal{H}_{\mathsf{A}},\,\mathcal{H}_{\mathsf{B}}$ Hilbert spaces.
- States assigned to causal diamonds on spacetime (local nets);

Emergent (not a priori!) geometry/topology encodes correlations among various subsystems.

"Spaces"

- (Weighted) Simplicial Complexes
- (Co)simplicial objects in a category

What's the Big Idea?

Multipartite Measures

E.g.:

- (Purely Classical): Bipartite joint measures
 - $\widehat{\mu} \colon \Omega_{\mathsf{A}} \times \Omega_{\mathsf{B}} \longrightarrow \mathbb{R}_{\geq 0},$
 - Ω_i (finite) sets.
- (Purely Quantum): Bipartite pure states
 - $\psi \in \mathcal{H}_{\mathsf{A}} \otimes \mathcal{H}_{\mathsf{B}},$
 - $\mathcal{H}_{\mathsf{A}},\,\mathcal{H}_{\mathsf{B}}$ Hilbert spaces.
- States assigned to causal diamonds on spacetime (local nets);

Emergent (not a priori!) geometry/topology encodes correlations among various subsystems.

"Spaces"

- (Weighted) Simplicial Complexes
- (Co)simplicial objects in a category
- Pre-cosheaves of measures "Measure Families"

What's the Big Idea? Practical Implications

Multipartite	"Spaces"
Measures	 Spaces

 New topologically-inspired measures of shared information and entanglement;

What's the Big Idea? Practical Implications

Multipartite	_	"Spaces"
Measures	-	Spaces

 New topologically-inspired measures of shared information and entanglement;

• Link invariants: $L \subset S^3$ a link with *N*-components;¹

$$\mathcal{Z}_{\mathsf{CS}}[S^3 - L] \in \mathcal{Z}_{\mathsf{CS}}[\mathbb{T}]^{\otimes N} \xrightarrow{} \begin{cases} \mathsf{Cohomology} \ H^\bullet \\ \mathsf{Poincaré polynomial} \ \sum_i (\dim H^i) z^i \end{cases}$$

¹Based on conversations with G. Moore. See work of Swingle and Balasubramanian, et. al.

What's the Big Idea? Practical Implications

Multipartite		"Spaces"
Measures	-	Spaces

 New topologically-inspired measures of shared information and entanglement;

• Link invariants: $L \subset S^3$ a link with *N*-components;¹

$$\mathcal{Z}_{\mathsf{CS}}[S^3 - L] \in \mathcal{Z}_{\mathsf{CS}}[\mathbb{T}]^{\otimes N} \leftrightsquigarrow$$

 $\left\{ egin{array}{c} \mathsf{Cohomology} \ H^ullet \ \mathsf{Poincare'} \ \mathsf{polynomial} \ \sum_i (\mathsf{dim} \ H^i) z^i \end{array}
ight\}$

 Possible goal: new geometric proofs/categorifications of entropy inequalities improving on arguments using the Ryu-Takayanagi formula for holographic states.

¹Based on conversations with G. Moore. See work of Swingle and Balasubramanian, et. al.

What's the Big Idea? Cohomology

What's the Big Idea? Cohomology

What's the Big Idea? Cohomology

Explored in Detail in Homological Tools for the Quantum Mechanic (arXiv:1901.0211).

Cohomological Breadcrumbs

Cohomological Breadcrumbs

What's the Big Idea? (Cohomology)

What's the Big Idea? (Cohomology)

What's the Big Idea? (Cohomology)

 $H^{0}(G_{\mu};\mathbb{C}) = \mathbb{C}\langle (1_{\{x_{1}\}},1_{\{y_{1}\}}),(1_{\{x_{2}\}},1_{\{y_{2}\}}),(1_{\{x_{3}\}},1_{\{y_{3}\}})\rangle$

 $1_S :=$ ^{the indicator function} on the subset S

$$\widetilde{H}^0(\mathit{G}_{\mu};\mathbb{C}) = \mathbb{C}\langle (1_{\{x_1\}},1_{\{y_1\}}),(1_{\{x_2\}},1_{\{y_2\}}),(1_{\{x_3\}},1_{\{y_3\}})\rangle \Big/ \underbrace{\mathbb{C}\langle (1_X,1_Y)\rangle}_{(X_1,Y_2)}$$

pairs of constant random variables

 $1_S \coloneqq \stackrel{\text{the indicator function}}{\text{on the subset } S}$

$$\widetilde{H}^0(\mathit{G}_{\mu};\mathbb{C}) = \mathbb{C}\langle (1_{\{x_1\}},1_{\{y_1\}}),(1_{\{x_2\}},1_{\{y_2\}}),(1_{\{x_3\}},1_{\{y_3\}})\rangle \Big/ \underbrace{\mathbb{C}\langle (1_X,1_Y)\rangle}_{(X_1,Y_2)}$$

pairs of constant random variables

 $1_S \coloneqq \stackrel{\text{the indicator function}}{\text{on the subset } S}$

 $\widetilde{H}^0(G_{\mu};\mathbb{C})\cong 0$

 $\operatorname{Supp}(\widehat{\mu}) = \operatorname{Supp}(\widehat{\mu}_X) \times \operatorname{Supp}(\widehat{\mu}_Y)$

 $\widetilde{H}^0(G_{\mu};\mathbb{C})\cong 0$

 $\operatorname{Supp}(\widehat{\mu}) = \operatorname{Supp}(\widehat{\mu}_X) \times \operatorname{Supp}(\widehat{\mu}_Y)$

There are no *maximally* correlated pairs of random variables. But there are *statistically* correlated pairs if $\hat{\mu} \neq \hat{\mu}_X \times \hat{\mu}_Y$.

 y_1

V2

V3

What's the Big Idea? Mysteries!

What's the Big Idea? Mysteries!

What's a Measure?

See Dmitri Pavlov's Gelfand-type duality for commutative von Neumann algebras, arXiv:2005.05284.

$$\begin{array}{c|c} \text{Algebra } R \\ \text{of Random Variables} \end{array} & \text{Measure } \mu \\ \overline{\text{Fun}}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{|\Omega|} & \mu(f) = \sum_{\omega \in \Omega} \widehat{\mu}_{\omega} f(\omega), \ \widehat{\mu}_{\omega} \in \mathbb{R}_{\geq 0} \end{array}$$

Algebra R
of Random VariablesMeasure
$$\mu$$
Fun $_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{|\Omega|}$ $\mu(f) = \sum_{\omega \in \Omega} \widehat{\mu}_{\omega} f(\omega), \ \widehat{\mu}_{\omega} \in \mathbb{R}_{\geq 0}$ $L^{\infty}(\Omega, \Sigma_{\Omega})$ $\mu(f) = \int_{\Omega} f \ d\mu$

Algebra R
of Random VariablesMeasure
$$\mu$$
Fun $\mathbb{C}(\Omega) \cong \mathbb{C}^{|\Omega|}$ $\mu(f) = \sum_{\omega \in \Omega} \widehat{\mu}_{\omega} f(\omega), \ \widehat{\mu}_{\omega} \in \mathbb{R}_{\geq 0}$ $L^{\infty}(\Omega, \Sigma_{\Omega})$ $\mu(f) = \int_{\Omega} f \ d\mu$ \mathcal{BH} $\mu(r) = \operatorname{Tr}_{\mathcal{H}}[\widehat{\mu}r], \ \widehat{\mu} \ trace \ class$

Algebra R
of Random VariablesMeasure μ Fun $_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{|\Omega|}$ $\mu(f) = \sum_{\omega \in \Omega} \hat{\mu}_{\omega} f(\omega), \ \hat{\mu}_{\omega} \in \mathbb{R}_{\geq 0}$ $L^{\infty}(\Omega, \Sigma_{\Omega})$ $\mu(f) = \int_{\Omega} f \ d\mu$ \mathcal{BH} $\mu(r) = \operatorname{Tr}_{\mathcal{H}}[\hat{\mu}r], \ \hat{\mu} \ \text{trace class}$ $\prod_{i=1}^{n} \operatorname{End}(\mathcal{H}_{i})$ $\mu(r_{1}, \cdots, r_{n}) = \sum_{i} \operatorname{Tr}_{\mathcal{H}_{i}}[\hat{\mu}^{(i)}r_{i}]$

Fix an algebra of random variables *R* with measures μ and ν : $\mu \leq \nu$ if $\mu(r^*r) \leq \nu(r^*r)$ for all $r \in R$.

Fix an algebra of random variables R with measures μ and ν : $\mu \leq \nu$ if $\mu(r^*r) \leq \nu(r^*r)$ for all $r \in R$.

Definition

Meas_R is the category whose objects are measures $\mu \colon R \to \mathbb{C}$ and with a unique morphism $\mu \to \nu$ if $\mu \leq \nu$.

The Category of Measures

Definition

Meas is the category with objects given by measures (R, μ) for any R;

The Category of Measures

Definition

Meas is the category with objects given by measures (R, μ) for any R; a morphism $f: (R, \mu) \to (Q, \omega)$ given by an "underlying" homomorphism $\underline{f}: Q \to R$ such that $\mu \circ \underline{f} \leq \omega$.

The Category of Measures: Properties

Meas has:

Coproducts ("disjoint union measures"):

$$\mu \boxplus \omega \colon R imes Q \longrightarrow \mathbb{C}$$
 $(r,q) \longmapsto \mu(r) + \omega(q)$

► Monoidal ⊗ products ("product measures"):

$$\mu\otimes\omega\colon R\otimes Q\longrightarrow\mathbb{C}$$

 $r\otimes q\longmapsto \mu(r)\omega(q)$

The Category of Measures: Properties

Meas has:

Coproducts ("disjoint union measures"):

$$\mu \boxplus \omega \colon R imes Q \longrightarrow \mathbb{C}$$

 $(r,q) \longmapsto \mu(r) + \omega(q)$

► Monoidal ⊗ products ("product measures"):

$$\mu \otimes \omega \colon R \otimes Q \longrightarrow \mathbb{C}$$

 $r \otimes q \longmapsto \mu(r)\omega(q)$

• Rescaling: $(\mathbb{R}_{\geq 0}, \times) \rightarrow (\text{End}(\text{Meas}), \circ).$

The total mass functor:

$$egin{aligned} \operatorname{Mass}\colon (\operatorname{\mathsf{Meas}},\otimes) &\longrightarrow (\mathbb{R}_{\geq 0}, imes) \ &\mu &\longmapsto \mu(1) \ &(\mu \leq \omega) \longmapsto (\mu(1) \leq \omega(1)) \end{aligned}$$

The Category of Measures: Dimension

There is a homomorphism:

dim :
$$\mathcal{K}_0(\mathbf{Meas}^{\operatorname{Fin}}) \longrightarrow \underbrace{\mathcal{O}(\mathbb{C})}_{\operatorname{Holomorphic Functions}}$$

 $\dim(\mu \boxplus \nu) = \dim(\mu) + \dim(\nu) \text{ and } \dim(\mu \otimes \nu) = \dim(\mu) \dim(\nu).$

The Category of Measures: Dimension

There is a homomorphism:

dim:
$$\mathcal{K}_0(\mathbf{Meas}^{\operatorname{Fin}}) \longrightarrow \underbrace{\mathcal{O}(\mathbb{C})}_{\operatorname{Holomorphic Functions}}$$

dim $(\mu \boxplus \nu)$ = dim (μ) + dim (ν) and dim $(\mu \otimes \nu)$ = dim (μ) dim (ν) . For a commutative measure $\hat{\mu} \colon \Omega \to \mathbb{R}_{\geq 0}$ $(q \in \mathbb{C})$:

$$\dim_q(\mu) = \sum_{\omega \in \Omega} \widehat{\mu}(\omega)^q$$

The Category of Measures: Dimension

There is a homomorphism:

dim:
$$\mathcal{K}_0(\mathbf{Meas}^{\operatorname{Fin}}) \longrightarrow \underbrace{\mathcal{O}(\mathbb{C})}_{\operatorname{Holomorphic Functions}}$$

 $\dim(\mu \boxplus \nu) = \dim(\mu) + \dim(\nu) \text{ and } \dim(\mu \otimes \nu) = \dim(\mu) \dim(\nu).$ For a commutative measure $\widehat{\mu} \colon \Omega \to \mathbb{R}_{\geq 0} \ (q \in \mathbb{C})$:

$$\dim_q(\mu) = \sum_{\omega \in \Omega} \widehat{\mu}(\omega)^q$$

Note:

$$\dim_0(\mu) \coloneqq \lim_{q \to 0} \dim_q(\mu) = |\mathrm{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}$$

Note:

$$\dim_0(\mu) := \lim_{q \to 0} \dim_q(\mu) = |\operatorname{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}.$$

Alternatively,

 $\dim_0 \widehat{\mu} = \dim L^2[\operatorname{Supp}(\widehat{\mu})]$

Note:

$$\dim_0(\mu) := \lim_{q \to 0} \dim_q(\mu) = |\operatorname{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}.$$

Alternatively,

$$\dim_0 \widehat{\mu} = \dim L^2[\operatorname{Supp}(\widehat{\mu})]$$

 $L^2[\operatorname{Supp}(\widehat{\mu})]$ is the classical version of the Gelfand-Neumark-Segal representation of $L^{\infty}(\Omega)$ associated to μ .

Note:

$$\dim_0(\mu) := \lim_{q \to 0} \dim_q(\mu) = |\operatorname{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}.$$

Alternatively,

$$\dim_0 \widehat{\mu} = \dim L^2[\operatorname{Supp}(\widehat{\mu})]$$

 $L^2[\operatorname{Supp}(\widehat{\mu})]$ is the classical version of the Gelfand-Neumark-Segal representation of $L^{\infty}(\Omega)$ associated to μ . This is secretly a functor

$$\texttt{GNS}: \textbf{Meas}^{\operatorname{op}} \longrightarrow \textbf{Rep}$$

Used in the construction of the cohomology of a measure.

Measure Families

A measure family over a measurable space (P, Σ_P) is a functor ("pre-cosheaf")

M: $\Sigma_P \longrightarrow Meas$

where Σ_P is a category with:

- Objects given by measurable sets;
- A unique morphism $T \rightarrow V$ if $T \subseteq V$.

Measure Families

A measure family over a measurable space (P, Σ_P) is a functor ("pre-cosheaf")

M: $\Sigma_P \longrightarrow Meas$

where Σ_P is a category with:

- Objects given by measurable sets;
- A unique morphism $T \rightarrow V$ if $T \subseteq V$.

For every measurable subset of $T \subseteq P$ we have a measure $M(T): R_T \to \mathbb{C}$.

Measure Families (Category Of)

A measure family over a measurable space (P, Σ_P) is a functor ("pre-cosheaf")

M: $\Sigma_P \longrightarrow Meas$

► There is a category of measure families equipped with a version of ⊞ (families over disjoint union sets) and ⊗ (families over product sets)

Measure Families (Category Of)

A measure family over a measurable space (P, Σ_P) is a functor ("pre-cosheaf")

M: $\Sigma_P \longrightarrow Meas$

- ► There is a category of measure families equipped with a version of ⊞ (families over disjoint union sets) and ⊗ (families over product sets)
- There is a subcategory MeasFam^{fin} of measure families over *finite* sets (Σ_P = Subsets(P)).

Measure Families (Category Of)

A measure family over a measurable space (P, Σ_P) is a functor ("pre-cosheaf")

M: $\Sigma_P \longrightarrow Meas$

- ► There is a category of measure families equipped with a version of ⊞ (families over disjoint union sets) and ⊗ (families over product sets)
- There is a subcategory MeasFam^{fin} of measure families over finite sets (Σ_P = Subsets(P)). ← our focus

Let $\widetilde{\mu}$: Subsets(Ω) $\rightarrow \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω . There is a measure family:

 $\begin{array}{l} \mathbf{A}^{\mu} \colon \, \mathbf{Subsets}(\Omega) \longrightarrow \mathbf{Meas} \\ \mathcal{T} \longmapsto (\operatorname{Rand}_{\mathbb{C}}(\mathcal{T}), \mu | _{\mathcal{T}}) \end{array}$

Let $\widetilde{\mu}$: Subsets(Ω) $\rightarrow \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω . There is a measure family:

$$A^{\mu}: \operatorname{Subsets}(\Omega) \longrightarrow \operatorname{Meas} \\ T \longmapsto (\operatorname{Rand}_{\mathbb{C}}(T), \mu|_{T}) \\ (T \subseteq V) \longmapsto \underbrace{\operatorname{restrict}^{V}_{T}: \mu|_{T} \to \mu|_{V}}_{\operatorname{Rand}_{\mathbb{C}}(V) \to \operatorname{Rand}_{\mathbb{C}}(T)}$$

Let $\widetilde{\mu}$: Subsets $(\Omega) \to \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω . There is a measure family:

 $A^{\mu}: \text{ Subsets}(\Omega) \longrightarrow \text{Meas}$ $T \longmapsto (\text{Rand}_{\mathbb{C}}(T), \mu|_{T})$ $(T \subseteq V) \longmapsto \underbrace{\text{restrict}^{V}_{T}}_{\text{Rand}_{\mathbb{C}}(V) \to \text{Rand}_{\mathbb{C}}(T)}$

By additivity: $A^{\mu} \cong \prod_{\omega \in \Omega} A^{\mu}|_{\{\omega\}}$:

Let $\widetilde{\mu}$: Subsets $(\Omega) \to \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω . There is a measure family:

 $A^{\mu}: \text{ Subsets}(\Omega) \longrightarrow \text{Meas}$ $T \longmapsto (\operatorname{Rand}_{\mathbb{C}}(T), \mu|_{T})$ $(T \subseteq V) \longmapsto \underbrace{\operatorname{restrict}^{V}_{T}}_{\operatorname{Rand}_{\mathbb{C}}(V) \to \operatorname{Rand}_{\mathbb{C}}(T)} \mu|_{T} \to \mu|_{V}$

By additivity: $A^{\mu} \cong \bigoplus_{\omega \in \Omega} A^{\mu}|_{\{\omega\}}$: cosheaf-like: global data comes from "additively" gluing together local data.

bipartite measure
$$oldsymbol{\mu}=rac{ extsf{R}_{\mathsf{A}}, extsf{R}_{\mathsf{B}}}{ extsf{ a pair of algebras}}+ \mathbb{C}$$
 a measure

bipartite measure
$$oldsymbol{\mu}=rac{ extsf{R}_{\mathsf{A}}, extsf{R}_{\mathsf{B}}}{ extsf{\mu}: extsf{R}_{\mathsf{A}}\otimes extsf{R}_{\mathsf{B}}} o \mathbb{C}$$
 a measure

We have homomorphisms

$$\begin{array}{ccc} \epsilon_{\mathsf{A}} \colon {\mathcal{R}}_{\mathsf{A}} \longrightarrow {\mathcal{R}}_{\mathsf{A}} \otimes {\mathcal{R}}_{\mathsf{B}} & & \epsilon_{\mathsf{B}} \colon {\mathcal{R}}_{\mathsf{B}} \longrightarrow {\mathcal{R}}_{\mathsf{A}} \otimes {\mathcal{R}}_{\mathsf{B}} \\ a \longmapsto a \otimes 1 & & b \longmapsto 1 \otimes b \end{array}$$

bipartite measure $\mu = \frac{R_{A}, R_{B} \text{ a pair of algebras}}{ \mu : R_{A} \otimes R_{B} \longrightarrow \mathbb{C}}$ a measure

We have homomorphisms

$$\begin{array}{ccc} \epsilon_{\mathsf{A}} \colon R_{\mathsf{A}} \longrightarrow R_{\mathsf{A}} \otimes R_{\mathsf{B}} & & \epsilon_{\mathsf{B}} \colon R_{\mathsf{B}} \longrightarrow R_{\mathsf{A}} \otimes R_{\mathsf{B}} \\ a \longmapsto a \otimes 1 & & b \longmapsto 1 \otimes b \end{array}$$

Giving us the reduced measures ("partial traces" / "marginal measures")

$$\begin{array}{ll} \mu_{\mathsf{A}} \coloneqq \mu \circ \epsilon_{\mathsf{A}} : \mathit{R}_{\mathsf{A}} \longrightarrow \mathbb{C} & \mu_{\mathsf{B}} \coloneqq \mu \circ \epsilon_{\mathsf{B}} : \mathit{R}_{\mathsf{B}} \longrightarrow \mathbb{C} \\ a \longmapsto \mu(a \otimes 1) & b \longmapsto \mu(1 \otimes b) \end{array}$$

multipartite measure $\mu = rac{(R_{
ho})_{
ho \in P}}{\mu \colon \bigotimes_{
ho \in P} R_{
ho}} \stackrel{+}{\longrightarrow} \mathbb{C}$ a measure

multipartite measure $\mu = \frac{(R_p)_{p \in P} \text{ tuple of algebras}}{\mu \colon \bigotimes_{p \in P} R_p \longrightarrow \mathbb{C} \text{ a measure}}$ For any $T \subseteq P$ we have a reduced measure $\mu_T \colon \bigotimes_{\substack{t \in T \\ R_T}} R_t \to \mathbb{C}.$

multipartite measure $\mu = \frac{(R_p)_{p \in P} \text{ tuple of algebras}}{\mu \colon \bigotimes_{p \in P} R_p \longrightarrow \mathbb{C} \text{ a measure}}$ For any $T \subseteq P$ we have a reduced measure $\mu_T \colon \bigotimes_{\substack{t \in T \\ R_T}} R_t \to \mathbb{C}.$

 C_{μ} : Subsets(*P*)^{op} \longrightarrow Meas
multipartite measure $\mu = \frac{(R_p)_{p \in P} \text{ tuple of algebras}}{\mu \colon \bigotimes_{p \in P} R_p \xrightarrow{+} \mathbb{C} \text{ a measure}}$ For any $T \subseteq P$ we have a reduced measure $\mu_T \colon \bigotimes_{\substack{t \in T \\ R_T}} R_t \to \mathbb{C}$.

$$C_{\mu}$$
: Subsets $(P)^{op} \longrightarrow$ Meas
 $T \longmapsto (R_T, \mu_T)$

multipartite measure $\mu = \frac{(R_p)_{p \in P}}{\mu : \bigotimes_{p \in P} R_p} \stackrel{\text{tuple of algebras}}{\longrightarrow} \mathbb{C}$ a measure For any $T \subseteq P$ we have a reduced measure $\mu_T \colon \bigotimes R_t \to \mathbb{C}$. C_{μ} : Subsets(*P*)^{op} \longrightarrow Meas $T \mapsto (R_T, \mu_T)$ $(T \subseteq U) \longmapsto [(-) \otimes 1_{U \setminus T} : R_T \to R_U] : \mu_U \longrightarrow \mu_T$

"partial trace/integration over $U \setminus T$ "

multipartite measure
$$\mu = \frac{(R_p)_{p \in P} \text{ tuple of algebras}}{\mu : \bigotimes_{p \in P} R_p \longrightarrow \mathbb{C} \text{ a measure}}$$

For any $T \subseteq P$ we have a reduced measure $\mu_T : \bigotimes_{\substack{t \in T \\ R_T}} R_t \to \mathbb{C}$.
 $C_{\mu}: \text{ Subsets}(P)^{\text{op}} \longrightarrow \text{Meas}$
 $T \longmapsto (R_T, \mu_T)$
 $(T \subseteq U) \longmapsto [(-) \otimes 1_{U \setminus T} : R_T \to R_U] : \mu_U \longrightarrow \mu_T$

"partial trace/integration over $U \setminus T$ "

But this isn't a measure family: it isn't covariant out of Subset(P)!

F

multipartite measure
$$\mu = \begin{pmatrix} (R_p)_{p \in P} \text{ tuple of algebras} \\ \mu : \bigotimes_{p \in P} R_p \longrightarrow \mathbb{C} \text{ a measure} \end{pmatrix}^+$$

For any $T \subseteq P$ we have a reduced measure $\mu_T : \bigotimes_{\substack{t \in T \\ R_T}} R_t \to \mathbb{C}$.
 $C_{\mu}: \text{ Subsets}(P)^{\text{op}} \longrightarrow \text{Meas}$
 $T \longmapsto (R_T, \mu_T)$
 $(T \subseteq U) \longmapsto \underbrace{[(-) \otimes 1_{U \setminus T}: R_T \to R_U]: \mu_U \longrightarrow \mu_T}$

"partial trace/integration over $U \setminus T$ "

But this isn't a measure family: it isn't covariant out of Subset(P)! To get a measure family, we define:

$$\mathbb{M}^{\boldsymbol{\mu}} \coloneqq C_{\boldsymbol{\mu}} \circ \underbrace{(-)^{c}}_{\text{complementation}} : \mathbf{Subsets}(P) \longrightarrow \mathbf{Meas}$$

Let $\tt M$ be a measure family over the set $\{A,B\}.$ We have a diagram in Meas:

 $M({A,B}) \leftarrow M({A}) \boxplus M({B}) \leftarrow M({O})$

Let M be a measure family over the set $\{A, B\}$. We have a diagram in **Meas**:

$$M({A,B}) \leftarrow M({A}) \boxplus M({B}) \leftarrow M({O})$$

These arrows use the coproduct property of \boxplus , e.g.

Čech (Semi)-Simplicial Measures from a Cover

For M a measure family over P: let $\{U_i\}_{i \in I}$ be a measurable cover of P. Define $U_J := \bigcap_{j \in I} U_j$ and $U_{\emptyset} = P$. We have (Note: $U_J \supseteq U_K$ if $J \subseteq K$):

$$\mathbb{M}(U_{\emptyset}) \longleftarrow \bigoplus_{|J|=1} \mathbb{M}(U_{J}) \xleftarrow{\leftarrow} \cdots \xleftarrow{\leftarrow}_{i} \bigoplus_{|J|=|I|-1} \mathbb{M}(U_{J}) \xleftarrow{\leftarrow}_{i} \mathbb{M}(U_{I})$$

Čech (Semi)-Simplicial Measures from a Cover

For M a measure family over P: let $\{U_i\}_{i \in I}$ be a measurable cover of P. Define $U_J := \bigcap_{j \in I} U_j$ and $U_{\emptyset} = P$. We have (Note: $U_J \supseteq U_K$ if $J \subseteq K$):

$$\mathbb{M}(U_{\emptyset}) \longleftarrow \bigoplus_{|J|=1} \mathbb{M}(U_{J}) \xleftarrow{\longleftarrow} \cdots \xleftarrow{\longleftarrow}_{i \in J} \bigoplus_{|J|=|I|-1} \mathbb{M}(U_{J}) \xleftarrow{\longleftarrow}_{i \in J} \mathbb{M}(U_{I})$$

Special Case: the complementary cover $\{p^c\}_{p\in P}$ of P:

$$\mathbb{M}(\emptyset^{c}) \longleftarrow \bigoplus_{|T|=1} \mathbb{M}(T^{c}) \xleftarrow{\leftarrow} \cdots \xleftarrow{\leftarrow} \lim_{i \in [T]=|P|-1} \mathbb{M}(T^{c}) \xleftarrow{\leftarrow} \mathbb{M}(P^{c})$$

Čech (Semi)-Simplicial Measures from a Cover

$$\mathbf{M}(\emptyset^{c}) \longleftarrow \bigoplus_{|\mathcal{T}|=1} \mathbf{M}(\mathcal{T}^{c}) \xleftarrow{\leftarrow} \cdots \xleftarrow{\vdots}_{|\mathcal{T}|=|\mathcal{P}|-1} \mathbf{M}(\mathcal{T}^{c}) \xleftarrow{\leftarrow}_{:} \mathbf{M}(\mathcal{P}^{c})$$

When $M = M^{\mu}$ for a multipartite measure μ , the above becomes:

There's now a few things we can extract from our (semi-)simplicial measure:

- Simplicial complexes
- Cohomology/chain complexes of vector spaces
- The index

There's now a few things we can extract from our (semi-)simplicial measure:

- Simplicial complexes
- Cohomology/chain complexes of vector spaces
- The index \leftarrow our focus

The Index of a Measure Family

$$\mathfrak{X}(\mathbf{M}) := - \underset{\mathsf{Char}}{\mathsf{Euler}} \left[\operatorname{M}(\emptyset^{c}) \longleftarrow \bigoplus_{|\mathcal{T}|=1} \operatorname{M}(\mathcal{T}^{c}) \xleftarrow{\leftarrow} \cdots \xleftarrow{\leftarrow} \underset{\stackrel{\leftarrow}{\underset{\leftarrow}{}}}{\overset{\leftarrow}{\underset{|\mathcal{T}|=|\mathcal{P}|-1}{\overset{\leftarrow}{\underset{\leftarrow}{}}}} \operatorname{M}(\mathcal{T}^{c}) \xleftarrow{\leftarrow} \underset{\stackrel{\leftarrow}{\underset{\leftarrow}{}}}{\overset{\leftarrow}{\underset{\leftarrow}{}}} \operatorname{M}(\mathcal{P}^{c}) \right]$$

The Index of a Measure Family

$$\begin{aligned} \mathfrak{X}(\mathbf{M}) &\coloneqq -\underset{\mathsf{Char}}{\overset{\mathsf{Euler}}{\mathsf{Euler}}} \left[\mathbb{M}(\emptyset^c) &\longleftarrow \underset{|\mathcal{T}|=1}{\overset{\mathsf{M}}{\boxplus}} \mathbb{M}(\mathcal{T}^c) &\xleftarrow{\leftarrow} \\ &\vdots \\ &\vdots \\ &= \sum_{d=-1}^{|\mathcal{P}|-1} (-1)^{d+1} \operatorname{dim} \left[\underset{|\mathcal{T}|=d+1}{\overset{\mathsf{M}}{\boxplus}} \mathbb{M}(\mathcal{T}^c) \right] \end{aligned}$$

The Index of a Measure Family

$$\begin{aligned} \mathfrak{X}(\mathbf{M}) &\coloneqq -\underset{\mathsf{Char}}{\mathsf{Euler}} \left[\mathbb{M}(\emptyset^c) \longleftrightarrow \bigoplus_{|\mathcal{T}|=1} \mathbb{M}(\mathcal{T}^c) \underset{\leftarrow}{\leftarrow} \cdots \underset{\leftarrow}{\leftarrow} \bigoplus_{|\mathcal{T}|=|\mathcal{P}|-1} \mathbb{M}(\mathcal{T}^c) \underset{\leftarrow}{\leftarrow} \mathbb{M}(\mathcal{P}^c) \right] \\ &= \sum_{d=-1}^{|\mathcal{P}|-1} (-1)^{d+1} \dim \left[\bigoplus_{|\mathcal{T}|=d+1} \mathbb{M}(\mathcal{T}^c) \right] \\ &= \sum_{\mathcal{T} \subseteq \mathcal{P}} (-1)^{|\mathcal{T}|} \dim [\mathbb{M}(\mathcal{T}^c)] \end{aligned}$$

$$\mathfrak{X}(\mathtt{M}) = \sum_{T \subseteq P} (-1)^{|T|} \operatorname{dim} [\mathtt{M}(T^{c})].$$

▶ When q = 0, $\mathfrak{X}_0(M) \in \mathbb{Z}$. If $M = M^{\mu}$ for μ commutative: $\mathfrak{X}_0(M^{\mu}) = \sum_{T \subseteq P} (-1)^{|T|} |\operatorname{Supp}(\mu_T)|.$

$$\mathfrak{X}(\mathtt{M}) = \sum_{T \subseteq P} (-1)^{|T|} \operatorname{dim} [\mathtt{M}(T^{c})].$$

▶ When q = 0, $\mathfrak{X}_0(M) \in \mathbb{Z}$. If $M = M^{\mu}$ for μ commutative: $\mathfrak{X}_0(M^{\mu}) = \sum_{T \subseteq P} (-1)^{|T|} |\operatorname{Supp}(\mu_T)|.$

• $\frac{d}{dq}\Big|_{q=1} \mathfrak{X}(\mathbb{M}^{\mu})$ is multipartite mutual information: $I(\mu) = \sum_{T \subseteq P} (-1)^{|T|-1} S(\mu_T) = \frac{d}{dq}\Big|_{q=1} \mathfrak{X}(\mathbb{M}^{\mu}).$

$$\mathfrak{X}(\mathtt{M}) = \sum_{T \subseteq P} (-1)^{|T|} \operatorname{dim} [\mathtt{M}(T^{c})].$$

▶ When q = 0, $\mathfrak{X}_0(M) \in \mathbb{Z}$. If $M = M^{\mu}$ for μ commutative: $\mathfrak{X}_0(M^{\mu}) = \sum_{T \subseteq P} (-1)^{|T|} |\operatorname{Supp}(\mu_T)|.$

•
$$\frac{d}{dq}\Big|_{q=1} \mathfrak{X}(\mathbb{M}^{\mu})$$
 is multipartite mutual information:
$$I(\mu) = \sum_{T \subseteq P} (-1)^{|T|-1} S(\mu_T) = \frac{d}{dq}\Big|_{q=1} \mathfrak{X}(\mathbb{M}^{\mu}).$$

 $I(\mu) = 0$ if $\mu = \mu_T \otimes \mu_V$ for any subsystems T and V.

$$\mathfrak{X}(\mathtt{M}) = \sum_{T \subseteq P} (-1)^{|T|} \operatorname{dim} [\mathtt{M}(T^{c})].$$

▶ When q = 0, $\mathfrak{X}_0(M) \in \mathbb{Z}$. If $M = M^{\mu}$ for μ commutative: $\mathfrak{X}_0(M^{\mu}) = \sum_{T \subseteq P} (-1)^{|T|} |\operatorname{Supp}(\mu_T)|.$

•
$$\frac{d}{dq}\Big|_{q=1} \mathfrak{X}(M^{\mu})$$
 is multipartite mutual information:
$$I(\mu) = \sum_{T \subseteq P} (-1)^{|T|-1} S(\mu_T) = \frac{d}{dq}\Big|_{q=1} \mathfrak{X}(M^{\mu}).$$

 $I(\mu) = 0$ if $\mu = \mu_T \otimes \mu_V$ for any subsystems T and V.

• $\frac{1}{q-1}\mathfrak{X}_q(\mathbb{M}^{\mu})$ is Tsallis-deformed multipartite mutual information.

$$\mathfrak{X}(\mu) = \sum_{T \subseteq P} (-1)^{|T|} \dim [\mathfrak{M}(T^c)]$$

Theorem

 \mathfrak{X} defines a homomorphism $K_0(\text{MeasFam}^{\operatorname{fin}}) \to \mathcal{O}(\mathbb{C})$: i.e.

$$\blacktriangleright \ \mathfrak{X}(\mathtt{M}\otimes \mathtt{N}) = \mathfrak{X}(\mathtt{M})\mathfrak{X}(\mathtt{N})$$

$$\blacktriangleright \ \mathfrak{X}(\mathtt{M} \boxplus \mathtt{N}) = \mathfrak{X}(\mathtt{M}) + \mathfrak{X}(\mathtt{N})$$

$$\mathfrak{X}(\mu) = \sum_{T \subseteq P} (-1)^{|T|} \dim [\mathfrak{M}(T^c)]$$

Theorem

 \mathfrak{X} defines a homomorphism $K_0(\text{MeasFam}^{\operatorname{fin}}) \to \mathcal{O}(\mathbb{C})$: i.e.

•
$$\mathfrak{X}(M \otimes N) = \mathfrak{X}(M)\mathfrak{X}(N)$$

$$\blacktriangleright \ \mathfrak{X}(\mathtt{M}\boxplus\mathtt{N})=\mathfrak{X}(\mathtt{M})+\mathfrak{X}(\mathtt{N})$$

Theorem

$$\mathfrak{X}(M) = 0$$
 if $|P| \ge 2$ and $M \cong M|_T \boxplus M|_V$ for any $T, V \subseteq P$

So $\mathfrak{X}(\mathbb{M})$ detects the failure of *additive* (\boxplus) descent of data, while $\frac{d}{dq}\Big|_{q=1}\mathfrak{X}(\mathbb{M})$ detects the failure of *multiplicative* (\otimes) descent.

Summary

- Mutual information (and its deformations) emerge naturally as an Euler characteristic (the "index") of some emergent "space".
- Random variables capturing "maximal" non-local correlations between subsystems are captured by cohomology.

With Roman Geiko and Greg Moore:

Wiggly arrow: Equivalence with reflective subcategory on top row. Dotted: Requires the data of Morita equivalent W^* -algebras.