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What’s the Big Idea?

Multipartite
Measures

“Spaces”

E.g.:

I (Purely Classical): Bipartite
joint measures

µ̂ : ΩA × ΩB −→ R≥0,

Ωi (finite) sets.

I (Purely Quantum):
Bipartite pure states

ψ ∈ HA ⊗HB,

HA, HB Hilbert spaces.

I States assigned to causal
diamonds on spacetime
(local nets);
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What’s the Big Idea? Practical Implications

Multipartite
Measures

“Spaces”

I New topologically-inspired measures of shared information and
entanglement;

I Link invariants: L ⊂ S3 a link with N-components;1

ZCS[S3 − L] ∈ ZCS[T]⊗N

{
Cohomology H•

Poincaré polynomial
∑

i (dimH i )z i

I Possible goal: new geometric proofs/categorifications of
entropy inequalities improving on arguments using the
Ryu-Takayanagi formula for holographic states.

1Based on conversations with G. Moore. See work of Swingle and
Balasubramanian, et. al.
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What’s the Big Idea? Cohomology

Multipartite
Measures

“Spaces”

Graded
Vector Spaces

(co)homology
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What’s the Big Idea? Cohomology

Multipartite
Measures

“Spaces”

Graded
Vector Spaces

(co)homology

H•

Explored in Detail in Homological Tools for the Quantum Mechanic
(arXiv:1901.0211).
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Cohomological Breadcrumbs

Expectation
Value︷︸︸︷
µ :

RandC(ΩA × ΩB)︷ ︸︸ ︷
RandC(ΩA)⊗ RandC(ΩB) −→ C

Factorizability: µ = µA ⊗ µB

Descent of data to subsystems. All global data
comes from gluing local data:

µ

∑
ij

ai ⊗ bj

 =
1

µ(1)

∑
ij

µ(ai ⊗ 1)µ(1⊗bj).

Failure to Factorize

Obstruction to descent:

µ(a⊗ b) 6= 1

µ(1)
µ(a⊗ 1)µ(1⊗ b)

for some (a, b) ∈ RandC(ΩA)× RandC(ΩB).
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for some (a, b) ∈ RandC(ΩA)× RandC(ΩB).

HOMOLOGICAL
ALARM BELLS!
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What’s the Big Idea? (Cohomology)

Multipartite
Measures

“Spaces”

Obstruction to descent:

µ(a⊗ b) 6= 1

µ(1)
µ(a⊗ 1)µ(1⊗ b)

for some (a, b) ∈ RandC(ΩA)× RandC(ΩB).

H•

Graded
Vector Spaces

(co)homology
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Graded
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bipartite
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x and y
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What’s the Big Idea? (Cohomology)

Multipartite
Measures

“Spaces”

Obstruction to descent:

µ(a⊗ b) 6= 1

µ(1)
µ(a⊗ 1)µ(1⊗ b)

for some (a, b) ∈ RandC(ΩA)× RandC(ΩB).

H•

Graded
Vector Spaces

(co)homology

H0
[

bipartite
measure

on X × Y

]
=
{

(x , y) ∈ RandC(X )× RandC(Y ) :
x and y

are
maximally correlated

}
/C〈(1, 1)〉

Hk [N-partite
measure ] =

{
tuples of (k + 1)-body random variables

exhibiting correlations

}/
{ trivial

correlations}, k ≤ N − 2
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Cohomology of a (Commutative) Bipartite Measure

x1 x2 x3

y1

y2

y3

Support of µ̂ : X × Y → R≥0

Gµ :=

x1 y1

x2 y2

x3 y3
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Cohomology of a (Commutative) Bipartite Measure

x1 x2 x3

y1

y2

y3

Support of µ̂ : X × Y → R≥0

Gµ :=

x1 y1

x2 y2

x3 y3
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Cohomology of a (Commutative) Bipartite Measure

x1 x2 x3

y1

y2

y3

Support of µ̂ : X × Y → R≥0

Gµ :=

x1 y1

x2 y2

x3 y3

H0(Gµ;C) ∼= C
# of connected

components = C3
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Cohomology of a (Commutative) Bipartite Measure

x1 x2 x3

y1

y2

y3

Support of µ̂ : X × Y → R≥0

Gµ :=

x1 y1

x2 y2

x3 y3

H̃0(Gµ;C) ∼= 0

Supp(µ̂) = Supp(µ̂X )× Supp(µ̂Y )

There are no maximally correlated pairs of random variables. But
there are statistically correlated pairs if µ̂ 6= µ̂X × µ̂Y .
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What’s the Big Idea? Numerical Invariants

Multipartite
Measures

“Spaces”

Graded
Vector Spaces

(co)homology
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What’s the Big Idea? Numerical Invariants

Multipartite
Measures

“Spaces”

Graded
Vector Spaces

(co)homology

ZR

Euler
characteristic

Mutual
Information

IAB = SA + SB − SA∪B.

For N partite measures:

IN =
N∑

k=0

(−1)k

 ∑
|T |=k

ST

.
where the T are subsystems.

χ

(
N

�
k=0

Hk

)
=

N∑
k=0

(−1)kdim(Hk)
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What’s the Big Idea? Numerical Invariants

Multipartite
Measures

“Spaces”

Graded
Vector Spaces

(co)homology

ZR

Euler
characteristic

Mutual
Information

Oq:
Holomorphic

Functions in q

In
d
e
x

E
ul

er
C
ha

r.

q → 0d
dq
|q=1
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The Index of A Commutative Bipartite Measure

x1 x2 x3

y1

y2

y3

p1

p2

p3

Support of µ̂ : X × Y → R≥0

Gµ :=

x1 y1
p1

x2 y2
p2

x3 y3
p3

Xq[Gµ] =

(∑
i

pi

)q

︸ ︷︷ ︸
dimq µ∅

− 2
∑
i

(pi )
q

︸ ︷︷ ︸
dimq(µX � µY )

+
∑
i

(pi )
q

︸ ︷︷ ︸
dimq(µXY )

= −Euler
Char[µ∅ ← µX � µY

←
←µXY ]

X0(Gµ) = 1− 2(3) + 3 = −2 = 1− χ(Gµ) = −(

2︷ ︸︸ ︷
dim H̃0−

0︷ ︸︸ ︷
dim H̃1)

d
dq

∣∣∣
q=1

Xq(Gµ) = Mass(µ) log[Mass(µ)]−
∑

i pi log(pi )

= SX + SY − SXY
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What’s a Measure?

(commutative) ∗-algebra R
+

Positive Linear Functional
µ : R → C

Measurable Space (Ω,ΣΩ)
+

(countably) additive map
µ̃ : ΣΩ −→ R≥0

L∞(Ω) = Algebra of C-valued random variables
+

Expectation value

specR = “Set of Projections”
+

Evaluation on projections

Positive means µ(r∗r) ≥ 0

See Dmitri Pavlov’s Gelfand-type duality for commutative von Neumann algebras, arXiv:2005.05284.

14

https://arxiv.org/abs/2005.05284


What’s a Measure?

“measure” = (normal) positive linear functional on a

“von Neumann algebra”︷ ︸︸ ︷
W ∗-algebra R.

µ : R −→ C

Algebra R
of Random Variables

Measure µ

FunC(Ω) ∼= C|Ω| µ(f ) =
∑

ω∈Ω µ̂ωf (ω), µ̂ω ∈ R≥0

L∞(Ω,ΣΩ) µ(f ) =
∫

Ω f dµ

BH µ(r) = TrH[µ̂r ], µ̂ trace class∏n
i=1 End(Hi ) µ(r1, · · · , rn) =

∑
i TrHi

[µ̂(i)ri ]
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The Category of Measures

Fix an algebra of random variables R with measures µ and ν:
µ ≤ ν if µ(r∗r) ≤ ν(r∗r) for all r ∈ R.

Definition

MeasR is the category whose objects are measures µ : R → C and
with a unique morphism µ→ ν if µ ≤ ν.
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The Category of Measures

Definition

Meas is the category with objects given by measures (R, µ) for
any R;

a morphism f : (R, µ)→ (Q, ω) given by an “underlying”
homomorphism f : Q → R such that µ ◦ f ≤ ω.

Algebras

MeasR

MeasQ

µ

ν

≤

R

Q

µ ◦ f

ω

≤

f

f
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MeasR MeasQ

µ

ν

≤

R Q

µ ◦ f

ω

≤

f

f
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The Category of Measures: Properties

Meas has:

I Coproducts (“disjoint union measures”):

µ� ω : R × Q −→ C
(r , q) 7−→ µ(r) + ω(q)

I Monoidal ⊗ products (“product measures”):

µ⊗ ω : R ⊗ Q −→ C
r ⊗ q 7−→ µ(r)ω(q)

I Rescaling: (R≥0,×)→ (End(Meas), ◦).

I The total mass functor:

Mass : (Meas,⊗) −→ (R≥0,×)

µ 7−→ µ(1)

(µ ≤ ω) 7−→ (µ(1) ≤ ω(1))

18
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The Category of Measures: Dimension

There is a homomorphism:

dim: K0(MeasFin) −→ O(C)︸ ︷︷ ︸
Holomorphic Functions

on C

dim(µ� ν) = dim(µ) + dim(ν) and dim(µ⊗ ν) = dim(µ) dim(ν).

For a commutative measure µ̂ : Ω→ R≥0 (q ∈ C):

dimq(µ) =
∑
ω∈Ω

µ̂(ω)q

Note:
dim0(µ) := lim

q→0
dimq(µ) = |Supp(µ̂)| ∈ Z≥0.
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The Category of Measures: the L2 functor

Note:
dim0(µ) := lim

q→0
dimq(µ) = |Supp(µ̂)| ∈ Z≥0.

Alternatively,
dim0 µ̂ = dim L2[Supp(µ̂)]

L2[Supp(µ̂)] is the classical version of the Gelfand-Neumark-Segal
representation of L∞(Ω) associated to µ. This is secretly a functor

GNS : Measop −→ Rep

Used in the construction of the cohomology of a measure.
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Measure Families

A measure family over a measurable space (P,ΣP) is a functor
(“pre-cosheaf”)

M : ΣP −→Meas

where ΣP is a category with:

I Objects given by measurable sets;

I A unique morphism T → V if T ⊆ V .

For every measurable subset of T ⊆ P we have a measure
M(T ) : RT → C.
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Measure Families (Category Of)

A measure family over a measurable space (P,ΣP) is a functor
(“pre-cosheaf”)

M : ΣP −→Meas

I There is a category of measure families equipped with a
version of � (families over disjoint union sets) and ⊗ (families
over product sets)

I There is a subcategory MeasFamfin of measure families over
finite sets (ΣP = Subsets(P)).
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(“pre-cosheaf”)

M : ΣP −→Meas

I There is a category of measure families equipped with a
version of � (families over disjoint union sets) and ⊗ (families
over product sets)

I There is a subcategory MeasFamfin of measure families over
finite sets (ΣP = Subsets(P)). ←− our focus
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Measure Families from Measures

Let µ̃ : Subsets(Ω)→ R≥0 be a measure on a finite set Ω. There
is a measure family:

Aµ : Subsets(Ω) −→Meas

T 7−→ (RandC(T ), µ|T )

(T ⊆ V ) 7−→ restrictVT︸ ︷︷ ︸
RandC(V )→ RandC(T )

: µ|T → µ|V

Subsets(Ω) Meas

R≥0

Aµ

µ̃
Mass

By additivity: Aµ ∼=�ω∈Ω Aµ|{ω}: cosheaf-like: global data comes
from “additively” gluing together local data.
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Measure Families from Multipartite Measures

bipartite measure µ =
RA, RB a pair of algebras

+
µ : RA ⊗ RB −→ C a measure

We have homomorphisms

εA : RA −→ RA ⊗ RB εB : RB −→ RA ⊗ RB

a 7−→ a⊗ 1 b 7−→ 1⊗ b

Giving us the reduced measures (“partial traces”/“marginal
measures”)

µA := µ ◦ εA : RA −→ C µB := µ ◦ εB : RB −→ C
a 7−→ µ(a⊗ 1) b 7−→ µ(1⊗ b)
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Measure Families from Multipartite Measures

multipartite measure µ =
(Rp)p∈P tuple of algebras

+
µ :

⊗
p∈P Rp −→ C a measure

For any T ⊆ P we have a reduced measure µT :
⊗
t∈T

Rt︸ ︷︷ ︸
RT

→ C.

Cµ : Subsets(P)op −→Meas

T 7−→ (RT , µT )

(T ⊆ U) 7−→ [(−)⊗ 1U\T : RT → RU ] : µU −→ µT︸ ︷︷ ︸
“partial trace/integration over U\T”

But this isn’t a measure family: it isn’t covariant out of
Subset(P)! To get a measure family, we define:

Mµ := Cµ ◦ (−)c︸︷︷︸
complementation

functor

: Subsets(P) −→Meas
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Toward (Semi-)Simplicial Measures

Let M be a measure family over the set {A,B}. We have a diagram
in Meas:

M({A,B})←−M({A})� M({B})←−←−M(∅)

These arrows use the coproduct property of �, e.g.

M({A,B})

M({A}) M({A})� M({B}) M({B})

iT
iT�iV

iV
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Čech (Semi)-Simplicial Measures from a Cover

For M a measure family over P: let {Ui}i∈I be a measurable cover
of P. Define UJ :=

⋂
j∈I Uj and U∅ = P. We have (Note:

UJ ⊇ UK if J ⊆ K ):

M(U∅)←−�
|J|=1

M(UJ)←−←− · · ·
←−
←−

...
←−
�

|J|=|I |−1

M(UJ)

←−
←−

...
←−

M(UI )

Special Case: the complementary cover {pc}p∈P of P:

M(∅c)←− �
|T |=1

M(T c)←−←− · · ·
←−
←−

...
←−
�

|T |=|P|−1

M(T c)

←−
←−

...
←−

M(Pc)
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Čech (Semi)-Simplicial Measures from a Cover

M(∅c)←− �
|T |=1

M(T c)←−←− · · ·
←−
←−

...
←−
�

|T |=|P|−1

M(T c)

←−
←−

...
←−

M(Pc)

When M = Mµ for a multipartite measure µ, the above becomes:

Deg. −1︷︸︸︷
µ∅ ←−

Deg. 0︷ ︸︸ ︷
�
|T |=1

µT
←−
←− · · ·

←−
←−

...
←−

Deg. |P| − 2︷ ︸︸ ︷
�

|T |=|P|−1

µT

←−
←−

...
←−︸︷︷︸

“Partial Traces”

Deg. |P| − 1︷︸︸︷
µP

28



There’s now a few things we can extract from our (semi-)simplicial
measure:

I Simplicial complexes

I Cohomology/chain complexes of vector spaces

I The index

← our focus
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The Index of a Measure Family

X(M) := −Euler
Char

[
M(∅c)←−�

|T |=1

M(T c)←−←− · · ·
←−
←−

...
←−
�

|T |=|P|−1

M(T c)

←−
←−

...
←−

M(Pc)

]

=

|P|−1∑
d=−1

(−1)d+1 dim

 �
|T |=d+1

M(T c)


=
∑
T⊆P

(−1)|T | dim [M(T c)]
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Some Properties of the Index

X(M) =
∑
T⊆P

(−1)|T | dim [M(T c)] .

I When q = 0, X0(M) ∈ Z. If M = Mµ for µ commutative:

X0(Mµ) =
∑
T⊆P

(−1)|T ||Supp(µT )|.

I d
dq

∣∣∣
q=1

X(Mµ) is multipartite mutual information:

I (µ) =
∑
T⊆P

(−1)|T |−1S(µT ) =
d

dq

∣∣∣∣
q=1

X(Mµ).

I (µ) = 0 if µ = µT ⊗ µV for any subsystems T and V .

I 1
q−1Xq(Mµ) is Tsallis-deformed multipartite mutual
information.
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Some Properties of the Index

X(µ) =
∑
T⊆P

(−1)|T | dim [M(T c)]

Theorem

X defines a homomorphism K0(MeasFamfin)→ O(C): i.e.

I X(M⊗ N) = X(M)X(N)

I X(M� N) = X(M) + X(N)

Theorem

X(M) = 0 if |P| ≥ 2 and M ∼= M|T � M|V for any T ,V ⊆ P.

So X(M) detects the failure of additive (�) descent of data, while
d
dq

∣∣∣
q=1

X(M) detects the failure of multiplicative (⊗) descent.
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Summary

I Mutual information (and its deformations) emerge naturally as
an Euler characteristic (the “index”) of some emergent
“space”.

I Random variables capturing “maximal” non-local correlations
between subsystems are captured by cohomology.

Multipartite
Measures

“Spaces”

Graded
Vector Spaces

(co)homology

ZR

Euler
characteristic

Mutual
Information

Oq:
Holomorphic

Functions in q
In

d
e
x

E
ul

er
C
ha

r.

q → 0d
dq
|q=1

Z[z ]

Poincaré
Poly.

z = −1
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Spinoff Work

With Roman Geiko and Greg Moore:

“von Neumann Bimodules”
with distinguished point

“Building Blocks” of
Matrix Product States

(normal)
Completely Positive Maps

Wiggly arrow: Equivalence with reflective subcategory on top row. Dotted: Requires the data of Morita equivalent

W∗-algebras.
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