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Measures

E.g.:

» (Purely Classical): Bipartite
joint measures

ﬁ: QA X QB — Rzo,

Q; (finite) sets.

» (Purely Quantum):
Bipartite pure states

P € Ha ® Hg,

Ha, Hp Hilbert spaces.

» States assigned to causal
diamonds on spacetime
(local nets);

» “Spaces”

Emergent (not a prioril) geome-
try/topology encodes correlations
among various subsystems.
» (Weighted) Simplicial
Complexes
» (Co)simplicial objects in a
category

» Pre-cosheaves of measures

“Measure Families”
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What's the Big Idea? Practical Implications

Multipartite

» “Spaces”
Measures

» New topologically-inspired measures of shared information and
entanglement;

» Link invariants: L C S3 a link with N-components;!

Cohomology H*®
Zcs [53 - L] S ch[T]®N M O. omo/ e . . N F
Poincaré polynomial > ;(dim H')z’

» Possible goal: new geometric proofs/categorifications of
entropy inequalities improving on arguments using the
Ryu-Takayanagi formula for holographic states.

!Based on conversations with G. Moore. See work of Swingle and
Balasubramanian, et. al.
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Multipartite
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Measures
Sy (CO)HOMOLOGY
H® ™~
L
Graded

Vector Spaces

Explored in Detail in Homological Tools for the Quantum Mechanic
(arXiv:1901.0211).


https://arxiv.org/abs/1901.02011
https://arxiv.org/abs/1901.02011

Cohomological Breadcrumbs

Expectation Rand~(Q Q
Value nde(@2a x 8)

’71\: Rand¢(Qa) ® Rande(Q2g) — C

Descent of data to subsystems. All global data
comes from gluing local data:

A u (zu: 2 ® bj> = ﬁzfj:/l(%'@l)ﬂ(l@bj)'

( Factorizability: © = pua ® ug

Obstruction to descent:

)

[ Failure to Factorize )JV\X/\/\» w(a® b) # ﬁu(a ®1)u(1® b)

for some (a, b) € Rand¢(Qa) x Randc(Q8).




Cohomological Breadcrumbs

Expectation Rand~(Q Q
Value andc(Qa X Qp)

p : Randc(Qa) ® Randc(Q5) — C

~

HOMOLOGICAL
ALARM BELLS!

H-OMG-LOGY!

J

Obstruction to descent:
1
a®b)# ——=pula®l)u(l® b
n(a® b) # #(l)u( Ju(1 @ b)

for some (a, b) € Rand¢(Qa) x Randc(Q8).
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Obstruction to descent: S~
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a®b)# ——pla®@Hu(l®b oy
I )#H(l)u( Ju(1®b) S0
S
for some (a,b) € Randc(Q2a) X Randc(Q8).
Graded

bipartite
HO [ moasure ]

on X X Y.
Hk N-partite

measure

Vector Spaces

x and y

}reqa, )

. are
maximally correlated

{ trivial
correlatlons

{(X,y) € Randc(X) x Randc(Y) :

X

tuples of (k 4 1)-body random variables
exhibiting correlations

,k<N-2
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Support of i: X X Y — Rsg

¥3

Y2

n

X1 X2 X3

# of connected

HO(G,; C) = € componnts — €3

X1

Y1

X2 e \

X3 e ¥3
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Support of i: X X Y — Rsg

Y3
X1 Y1
Y2
G L X2 o—————————
no
pg! X3 ¢ V3

X1 X2 X3

(64 ©) = C{(Lpap gy (g Lpm): (L) 1{y3})>/C<(1X7 1y))
pairs of constant

random variables

1 ¢ := the indicator function
S - on the subset S



Support of 1i: X X Y — Ry

Y3
X1 y1
2
Y G — ¥2
no
»n X3 ¥3
X1 X2 X3
H%(G,;C) =0

Supp(z) = Supp(fix) x Supp(fiy)



Cohomology of a (Commutative) Bipartite Measure

Support of fi: X X Y — Rx

y3 ° ) °
X1 y1
Yo ° ° ] X v
X2 2

G, =

iy t ? ? X3 bz

| | |

X1 X2 X3

H(G,;C) =0

Supp(iz) = Supp(fix) x Supp(iiy)

There are no maximally correlated pairs of random variables. But
there are statistically correlated pairs if i # fix X fiy.
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Support of 71: X x Y — Rxg
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Support of 71: X x Y — Rxg

3 P3
Y2 P2
Gﬂ
n P1
X1 X2 X3

P1

X1 y1
P2

X2 Y2
P3

X3 y3

q
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i i i

- —
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PART I




What's a Measure?

L>(Q2) = Algebra of C-valued random variables
+
Expectation value

=

(commutative) x-algebra R Measurable Space (22, £q)
+ +
Positive Linear Functional (countably) additive map
/LZR*}(C ﬁZZQ—)Rzo

7

spec R = “Set of Projections”
+
Evaluation on projections

Positive means p(r*r) >0

See Dmitri Pavlov's Gelfand-type duality for commutative von Neumann algebras, arXiv:2005.05284.

14


https://arxiv.org/abs/2005.05284

“von Neumann algebra”

——
“measure” = (normal) positive linear functional on a W*-algebra R.
uw:R—C

15



“von Neumann algebra”

“measure” = (normal) positive linear functional on a W*-algebra R.
u:R—C
Algebra R
of Random Variables | Measure p
Func(Q) = CU | u(f) = X cq B (@), iw € Rag

15



“von Neumann algebra”

—
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uw:R—C
Algebra R
of Random Variables | Measure 1
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What's a Measure?

—_——~
“measure” = (normal) positive linear functional on a W*-algebra R.

Algebra R
of Random Variables

“von Neumann algebra”

uw:R—C

Measure p

Func(Q) = CI¥
L>®(Q,%Xq)
BH

H7:1 End(#H,)

u(f) = X peq Hof (W), Huw € R>o
u(f) = Jofdu
p(r) = Trylpr], 1 trace class

(

piry, - 7rn) = ZiTrHi[ﬁ(i)rf]

15



Fix an algebra of random variables R with measures yp and v:
w<wvif p(r'r) <uv(rr) forall r € R.

16



Fix an algebra of random variables R with measures 1 and v:
w<wvif p(r'r) <uv(rr) forall r € R.

Measy, is the category whose objects are measures p: R — C and
with a unique morphism p — v if p < wv.



The Category of Measures

Measpr

Algebras

17



The Category of Measures
Definition

Meas is the category with objects given by measures (R, u) for
any R;

Measg Meas

Algebras

17



The Category of Measures

Definition

Meas is the category with objects given by measures (R, u) for
any R; a morphism f: (R, ) — (Q,w) given by an “underlying”
homomorphism f: Q@ — R such that o f < w.

Measg Meas

— v

VI
0/.L0£

Algebras

17



The Category of Measures: Properties

Meas has:
» Coproducts ( “disjoint union measures”):

pBw: Rx Q@ —C
(r,q) — p(r) +w(q)
» Monoidal ® products ( “product measures”):

pRw: R Q —C
r®qr— p(r)w(q)

18



The Category of Measures: Properties

Meas has:
» Coproducts ( “disjoint union measures”):

pBw: Rx Q@ —C
(r,q) — u(r) +w(q)
» Monoidal ® products ( “product measures”):
pRw: R Q —C
r@q— pu(r)w(q)
» Rescaling: (R>o, x) — (End(Meas), o).
» The total mass functor:
Mass: (Meas, ®) — (R>o, X)
p— p(1)
(h <w)r— (p(1) < w(1))

18



There is a homomorphism:

dim: Ko(Meas" ™) — O(C)
~——

Holomorphic Functions

on C

dim(p B v) = dim(p) + dim(v) and dim(p @ v) = dim(u) dim(v).

19



The Category of Measures: Dimension

There is a homomorphism:

dim: Ko(Meas" ") — O(C)
~——

Holomorphic Functions
on C

dim(p B v) = dim(p) + dim(v) and dim(p ® v) = dim(u) dim(v).
For a commutative measure j1: Q — R>g (g € C):

dimq (i) = 3 fi(w)?

we

19



The Category of Measures: Dimension

There is a homomorphism:

dim: Ko(Meas" ") — O(C)
~——

Holomorphic Functions
on C

dim(p B v) = dim(p) + dim(v) and dim(p ® v) = dim(u) dim(v).
For a commutative measure j1: Q — R>g (g € C):

dimg(n) = 3 A(w)°
we
Note:

dimo(u) := lim dimg(1) = |Supp(#)| € Zo.

19



Note:
dimg(p) = lim dimg(n) = |Supp(f2)| € Z>o.
q—0

Alternatively,
dimg i = dim L2 [Supp(1z)]

20



Note:
dimo(p) = (IJi_r}nOdimq(u) = |Supp(z)| € Z>o.

Alternatively,
dimg i = dim L2 [Supp(1z)]

L2[Supp(72)] is the classical version of the Gelfand-Neumark-Segal
representation of L°°(2) associated to p.

20



The Category of Measures: the L? functor

Note:

dimo(p) == Iimodimq(//) = |Supp(i2)| € Z>o.
q—

Alternatively,
dimg i = dim L?[Supp(72)]

L2[Supp(j1)] is the classical version of the Gelfand-Neumark-Segal
representation of L°°(2) associated to u. This is secretly a functor

GNS : Meas®® — Rep

Used in the construction of the cohomology of a measure.

20



A measure family over a measurable space (P, Xp) is a functor
(“pre-cosheaf”)
M: Xp — Meas
where X p is a category with:
» Objects given by measurable sets;
» A unique morphism T — Vif T C V.

21



Measure Families

A measure family over a measurable space (P, Xp) is a functor
(“pre-cosheaf”)
M: ¥p — Meas
where X p is a category with:
» Objects given by measurable sets;
» A unique morphism T — V if T C V.

For every measurable subset of T C P we have a measure
M( T): R+ — C.

YO DAWG | HEARD YOU LIKE MEASURES

S0 WE PUT MEASURES IN Yllilll MERSURE
.SOYOU CAN AVERAGE WHILE YOU AVERAGE

21



Measure Families (Category Of)

A measure family over a measurable space (P, Xp) is a functor
(“pre-cosheaf”)
M: ¥p — Meas

» There is a category of measure families equipped with a
version of B (families over disjoint union sets) and ® (families
over product sets)

22



Measure Families (Category Of)

A measure family over a measurable space (P, Xp) is a functor
(“pre-cosheaf”)
M: ¥p — Meas

» There is a category of measure families equipped with a
version of B (families over disjoint union sets) and ® (families
over product sets)

» There is a subcategory MeasFam'™ of measure families over
finite sets (Xp = Subsets(P)).

22



A measure family over a measurable space (P, Xp) is a functor
(“pre-cosheaf”)
M: Xp — Meas

» There is a category of measure families equipped with a
version of H (families over disjoint union sets) and ® (families
over product sets)

» There is a subcategory MeasFam®™ of measure families over
finite sets (Xp = Subsets(P)). «— our focus

22



Let fz: Subsets(2) — R>q be a measure on a finite set . There
is a measure family:

A¥: Subsets(Q2) — Meas
T +— (Randc(T), pl7)

23



Let fz: Subsets(2) — R>q be a measure on a finite set . There
is a measure family:

A¥: Subsets(Q2) — Meas
T +— (Randc(T), pl7)

(T C V) — restrict” 72 p|7 — plv
—_———

Rand¢(V) — Randc(T)

23



Measure Families from Measures

Let fz: Subsets(2) — R>q be a measure on a finite set . There
is a measure family:

A" Subsets(2) — Meas
T +— (Randc(T), p|7)

(T C V) — restrict” 2 p|T — ply
——

Randc (V) — Randc(T)

Subsets(Q) —“— Meas

RZO

By additivity: A* = [ o A*[r:

23



Measure Families from Measures

Let fz: Subsets(2) — R>q be a measure on a finite set . There
is a measure family:

A" Subsets(2) — Meas
T +— (Randc(T), p|7)

(T C V) — restrict” 2 p|T — ply
——

Randc (V) — Randc(T)
Subsets(Q) —“— Meas

RZO

By additivity: A* = [ o A#[.): cosheaf-like: global data comes
from “additively” gluing together local data.

23



i . Ra, Rg a pair of algebras
bipartite measure pu =
u: Ry ® Rg — C a measure

24



Ra, Rg a pair of algebras

bipartite measure pu =
u: Ry ® Rg — C a measure

We have homomorphisms

en: Ran — Ra ® Rg eg: R — Ra ® Rg
ar—a®l b—1®b

24



Measure Families from Multipartite Measures

. . Ra, Rg a pair of algebras
bipartite measure pu =
u: Ry ® Rg — C a measure

We have homomorphisms

en: Ran — Ra ® Rg eg: Re — Ra ® Rp
ar—a®l b—1®b
Giving us the reduced measures ( “partial traces” / “marginal
measures” )
upa = poep: Rn — C ug =poeg: Rg — C

ar— pu(a®1l) b+— u(l® b)

24



(Rp)pep tuple of algebras

multipartite measure p =
p: Qpep Rp — C a measure

25



] ) (Rp)pep tuple of algebras
multipartite measure p =

p: Qpep Rp — C a measure
For any T C P we have a reduced measure p7: ® R: — C.

teT
——
Rt

25



Measure Families from Multipartite Measures

(Rp)pep tuple of algebras
+

multipartite measure p =
p: &Qpep Ro —> C a measure

For any T C P we have a reduced measure y7: ® Ry — C.

teT
——
Rt

Cu: Subsets(P)°® — Meas

25



Measure Families from Multipartite Measures

(Rp)pep tuple of algebras
+

multipartite measure p =
p: &Qpep Ro —> C a measure

For any T C P we have a reduced measure y7: ® Ry — C.

teT
——
Rt

Cu: Subsets(P)°® — Meas

T +— (RT,,U,T)

25



Measure Families from Multipartite Measures

) ) (Rp)pep tuple of algebras
multipartite measure p = +

p: &Qpep Ro —> C a measure
For any T C P we have a reduced measure y7: ® Ry — C.

teT
——
Rt
Cu: Subsets(P)°® — Meas
T +— (RT, ,u-r)

(TCU)—[(-)®Lly7: R = Rul: pu — pr

“partial trace/integration over U\ T"

25



Measure Families from Multipartite Measures

) ) (Rp)pep tuple of algebras
multipartite measure p = +

p: &Qpep Ro —> C a measure
For any T C P we have a reduced measure y7: ® Ry — C.

teT
——
Rt
Cu: Subsets(P)°® — Meas
T +— (RT, ,u-r)

(TCU)—[(-)®Lly7: R = Rul: pu — pr

“partial trace/integration over U\ T"

But this isn't a measure family: it isn't covariant out of
Subset(P)!

25



Measure Families from Multipartite Measures

) ) (Rp)pep tuple of algebras
multipartite measure p = +

p: &Qpep Ro —> C a measure
For any T C P we have a reduced measure y7: ® Ry — C.

teT
——
Rt
Cu: Subsets(P)°® — Meas
T +— (RT, ,u-r)

(TCU)—[(-)®Lly7: R = Rul: pu — pr

“partial trace/integration over U\ T"

But this isn't a measure family: it isn't covariant out of
Subset(P)! To get a measure family, we define:
M¥ :=C, 0 (—)°: Subsets(P) — Meas

complementation
functor

25



Let M be a measure family over the set {A,B}. We have a diagram
in Meas:
M({A, B})«—u({A}) BM({B})—M(0)

26



Toward (Semi-)Simplicial Measures

Let M be a measure family over the set {A,B}. We have a diagram
in Meas:

M({A, B)«—M({A}) B M({B})M(0)

These arrows use the coproduct property of H, e.g.

M({A,B})

) A .
T 5 o v
ITEHI\/ :
I
I

M({A}) — M({A}) BM({B}) < M({B})

26



Cech (Semi)-Simplicial Measures from a Cover

For M a measure family over P: let {U;};c; be a measurable cover
of P. Define U; = mjel Uj and Uy = P. We have (Note:
Uy D Uk if JC K):

— —

M(Uy) «— R MUN= . B M) M)

|J|=1 — [J|=1]-1 —

27



For M a measure family over P: let {U;};c; be a measurable cover
of P. Define U, := (¢, Uj and Uy = P. We have (Note:
Uy 2 Uk if J C K):

17

<_

M(Up) «— MU=, EH muy) M)

|J|=1 — [J|=|1)-1 —

Special Case: the complementary cover {p},cp of P:

— <—

M) «— A wry=--. FH w7 Mm(Pe)

[T|=1 | T|=|P|-1 —
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Cech (Semi)-Simplicial Measures from a Cover

M%) «— F m(rey=--

ITI=1

- B owrueo)
< |T|=|P|-1 .

When M = M* for a multipartite measure u, the above becomes:

Deg. 0
Deg. —1 —_—
~ =~ «—
Hy < HH BT —
ITI=1

Deg. |P| — 2
— — A~ ¢ Deg |PI-1
— — PN
H v e
«— |T|=|P|-1 —
~—~—

“Partial Traces”
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There's now a few things we can extract from our (semi-)simplicial
measure:

» Simplicial complexes
» Cohomology/chain complexes of vector spaces
» The index

29



There's now a few things we can extract from our (semi-)simplicial
measure:

» Simplicial complexes
» Cohomology/chain complexes of vector spaces

» The index < our focus
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x(u) = —'é‘#:ﬁ[M(wC)HEHMUf):f H M<T°)TM(PC)]

IT|=1 — |TI=IPI-1 =
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x(M) = —Ew::[M(wC)HHHM(TC):-f H M(TC)?M(PC)]

|T|=1 | T|=|P|-1 —

|P|—1
= Z(—l)d+1dim[ H M(TC)]

d=—1 | T|=d+1
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X (M) = —Euler [M((DC)H B M(TC)TM(PC)]
=2 | TI=IP-1 -

|P|—1
= Z(—l)d+1dim[ H M(TC)]

d=—1 | T|=d+1

= > (=) dim pa(T<)]

TCP
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xm) =Y (=1) T dim m(T)].

TCP
» When g =0, Xo(M) € Z. If M = M* for ;. commutative:

Xo(*) = > (—1)!"![Supp(u)|-
TCP

31



x01) = > (=) dim (7).

TCP
» When g =0, Xo(M) € Z. If M = M* for ;. commutative:

Xo(*) = > (—1)!"![Supp(u)|-
TCP

> diq’ X (M) is multipartite mutual information:
q=1

() = 3 ()T S(ur) = 5

TCP

X ().
q=1

31



Some Properties of the Index
x(1) = > (=1)! " dim (7).
TCP
» When g =0, Xo(M) € Z. If M = M* for pp commutative:
Xom*) = > (1) "|Supp(pu7)|-

TCP
> diq‘qﬂ X(MM) is multipartite mutual information:
ITI-1 gl ”
()= (~D)TIS(ur) = -~ x(4").
TCP Tlg=1

I(p) =0if p = pr ® py, for any subsystems T and V.



Some Properties of the Index

x(1) = > (=1)! " dim (7).

TCP
» When g =0, Xo(M) € Z. If M = M* for pp commutative:
Xo(*) = Y (~1)!T|Supp(p7)|.

TCP

> diq‘qﬂ X(MM) is multipartite mutual information:

()= Y (1) T s(ur) = £

x(u).
TCP q

q=1

I(p) =0if p = pr ® py, for any subsystems T and V.

> ﬁ%q(M“) is Tsallis-deformed multipartite mutual
information.



X(u) = Y (=1)! T dim [M(T)]

TCP

X defines a homomorphism Ko(MeasFam'™) — O(C): i.e.
> X(M®N) = X(M)X(N)
> X(MEN) = X(M) + X(N)




Some Properties of the Index

X(u) =Y (=1)Tdim (T€)]

TCP

Theorem

X defines a homomorphism Ky(MeasFam™) — O(C): i.e.
> X(M®N) = X(M)X(N)
> X(MEN) =X(M) + X(N)

Theorem
X(M)=0if|P| >2 and M= M|t BM|, forany T,V C P.

So X(M) detects the failure of additive (H) descent of data, while

diq ot X (M) detects the failure of multiplicative (®) descent.
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Summary

» Mutual information (and its deformations) emerge naturally as
an Euler characteristic (the “index") of some emergent
“space”.

» Random variables capturing “maximal” non-local correlations
between subsystems are captured by cohomology.

Multipartite “Spaces”
Measures /
@
AT
© (CO)HOMOLOGY
éé
< l
-
Z,
2,
2,
MuTuAL Graded
INFORMATION Vector Spaces
POINCARE
Pory.
2] - EULER

CHARACTERISTIC
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Spinoff Work

With Roman Geiko and Greg Moore:

with distinguished point Matrix Product States

A«

[“von Neumann Bimodules” ]

(normal)
Completely Positive Maps

Wiggly arrow: Equivalence with reflective subcategory on top row. Dotted: Requires the data of Morita equivalent

W™ -algebras



