Higher Information
 The untold topological secrets of measures and states

Tom Mainiero

St. Joseph's University, NY

November 8, 2023

Related Work

- Baudot-Bennequin: The Homological Nature of Entropy;
- Vigneaux: The structure of information from probability to homology;
- Bennequin, Sergant-Perthuis, Vigneaux: Extra-fine sheaves and interaction decompositions;
- Baez-Fritz-Leinster: Entropy as a Functor;
- Hamilton/Leditsky: Probing multipartite entanglement through persistent homology;

What's the Big Idea?

Multipartite
Measures \qquad

E.g.:

- (Purely Classical): Bipartite joint measures

$$
\widehat{\mu}: \Omega_{\mathrm{A}} \times \Omega_{\mathrm{B}} \longrightarrow \mathbb{R}_{\geq 0}
$$

Ω_{i} (finite) sets.

- (Purely Quantum):

Bipartite pure states

$$
\psi \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}
$$

$\mathcal{H}_{\mathrm{A}}, \mathcal{H}_{\mathrm{B}}$ Hilbert spaces.

- States assigned to causal diamonds on spacetime (local nets);

What's the Big Idea?

Multipartite
Measures \qquad
E.g.:

- (Purely Classical): Bipartite joint measures

$$
\widehat{\mu}: \Omega_{\mathrm{A}} \times \Omega_{\mathrm{B}} \longrightarrow \mathbb{R}_{\geq 0}
$$

Ω_{i} (finite) sets.

- (Purely Quantum):

Bipartite pure states

$$
\psi \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}
$$

$\mathcal{H}_{\mathrm{A}}, \mathcal{H}_{\mathrm{B}}$ Hilbert spaces.

- States assigned to causal diamonds on spacetime (local nets);

Emergent (not a priori!) geometry/topology encodes correlations among various subsystems.

- (Weighted) Simplicial Complexes
- (Co)simplicial objects in a category

What's the Big Idea?

Multipartite
Measures
E.g.:

- (Purely Classical): Bipartite joint measures

$$
\widehat{\mu}: \Omega_{\mathrm{A}} \times \Omega_{\mathrm{B}} \longrightarrow \mathbb{R}_{\geq 0},
$$

Ω_{i} (finite) sets.

- (Purely Quantum):

Bipartite pure states

$$
\psi \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}
$$

$\mathcal{H}_{A}, \mathcal{H}_{B}$ Hilbert spaces.

- States assigned to causal diamonds on spacetime (local nets);

Emergent (not a priori!) geometry/topology encodes correlations among various subsystems.

- (Weighted) Simplicial Complexes
- (Co)simplicial objects in a category
- Pre-cosheaves of measures
"Measure Families"

What's the Big Idea? Practical Implications

Multipartite Measures
\qquad

- New topologically-inspired measures of shared information and entanglement;

What's the Big Idea? Practical Implications

- New topologically-inspired measures of shared information and entanglement;
- Link invariants: $L \subset S^{3}$ a link with N-components; ${ }^{1}$

$$
\mathcal{Z}_{\mathrm{CS}}\left[S^{3}-L\right] \in \mathcal{Z}_{\mathrm{CS}}[\mathbb{T}]^{\otimes N} \leadsto\left\{\begin{array}{l}
\text { Cohomology } H^{\bullet} \\
\text { Poincaré polynomial } \sum_{i}\left(\operatorname{dim} H^{i}\right) z^{i}
\end{array}\right.
$$

[^0]
What's the Big Idea? Practical Implications

- New topologically-inspired measures of shared information and entanglement;
- Link invariants: $L \subset S^{3}$ a link with N-components; ${ }^{1}$

$$
\mathcal{Z}_{\mathrm{CS}}\left[S^{3}-L\right] \in \mathcal{Z}_{\mathrm{CS}}[\mathbb{T}]^{\otimes N} \leadsto\left\{\begin{array}{l}
\text { Cohomology } H^{\bullet} \\
\text { Poincaré polynomial } \sum_{i}\left(\operatorname{dim} H^{i}\right) z^{i}
\end{array}\right.
$$

- Possible goal: new geometric proofs/categorifications of entropy inequalities improving on arguments using the Ryu-Takayanagi formula for holographic states.

[^1]
What's the Big Idea? Cohomology

Multipartite \qquad
(со) номоlogy

What's the Big Idea? Cohomology

What's the Big Idea? Cohomology

Explored in Detail in Homological Tools for the Quantum Mechanic (arXiv:1901.0211).

Cohomological Breadcrumbs

Expectation

$$
\overbrace{\mu}^{\substack{\text { Vpectation } \\ \text { Value }}}: \overbrace{\operatorname{Rand}}^{\mathbb{C}}\left(\Omega_{\mathrm{A}}\right) \otimes \operatorname{Rand}_{\mathbb{C}}\left(\Omega_{\mathrm{B}}\right) \longrightarrow \mathbb{C}
$$

Cohomological Breadcrumbs

What's the Big Idea? (Cohomology)

What's the Big Idea? (Cohomology)

What's the Big Idea? (Cohomology)

Cohomology of a (Commutative) Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

$$
G_{\mu}:=\begin{aligned}
& x_{1} \bullet y_{1} \\
& x_{2} \bullet y_{2} \\
& x_{3} \longmapsto y_{3}
\end{aligned}
$$

Cohomology of a (Commutative) Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

Cohomology of a (Commutative) Bipartite Measure

Cohomology of a (Commutative) Bipartite Measure

Cohomology of a (Commutative) Bipartite Measure

$$
\begin{aligned}
& \text { Support of } \widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0} \\
& G_{\mu}:=x_{2} \longmapsto y_{2} \\
& x_{3} \longmapsto y_{3} \\
& \widetilde{H}^{0}\left(G_{\mu} ; \mathbb{C}\right)=\mathbb{C}\left\langle\left(1_{\left\{x_{1}\right\}}, 1_{\left\{y_{1}\right\}}\right),\left(1_{\left\{x_{2}\right\}}, 1_{\left\{y_{2}\right\}}\right),\left(1_{\left\{x_{3}\right\}}, 1_{\left\{y_{3}\right\}}\right)\right\rangle / \underbrace{\mathbb{C}\left\langle\left(1_{X}, 1_{Y}\right)\right\rangle}_{\begin{array}{c}
\text { pairs of constant } \\
\text { random variables }
\end{array}} \\
& 1_{S}:=\begin{array}{c}
\text { the indicator function } \\
\text { on the subset } S
\end{array}
\end{aligned}
$$

Cohomology of a (Commutative) Bipartite Measure

$$
\begin{aligned}
& \text { Support of } \widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0} \\
& G_{\mu}:=x_{2} \longmapsto y_{2} \\
& x_{3} \longmapsto y_{3} \\
& \widetilde{H}^{0}\left(G_{\mu} ; \mathbb{C}\right)=\mathbb{C}\left\langle\left(1_{\left\{x_{1}\right\}}, 1_{\left\{y_{1}\right\}}\right),\left(1_{\left\{x_{2}\right\}}, 1_{\left\{y_{2}\right\}}\right),\left(1_{\left\{x_{3}\right\}}, 1_{\left\{y_{3}\right\}}\right)\right\rangle / \underbrace{\mathbb{C}\left\langle\left(1_{X}, 1_{Y}\right)\right\rangle}_{\begin{array}{c}
\text { pairs of constant } \\
\text { random variables }
\end{array}} \\
& 1_{S}:=\begin{array}{c}
\text { the indicator function } \\
\text { on the subset } S
\end{array}
\end{aligned}
$$

Cohomology of a (Commutative) Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

$\widetilde{H}^{0}\left(G_{\mu} ; \mathbb{C}\right) \cong 0$

$$
\operatorname{Supp}(\widehat{\mu})=\operatorname{Supp}\left(\widehat{\mu}_{X}\right) \times \operatorname{Supp}\left(\widehat{\mu}_{Y}\right)
$$

Cohomology of a (Commutative) Bipartite Measure

$\widetilde{H}^{0}\left(G_{\mu} ; \mathbb{C}\right) \cong 0$

$$
\operatorname{Supp}(\widehat{\mu})=\operatorname{Supp}\left(\widehat{\mu}_{X}\right) \times \operatorname{Supp}\left(\widehat{\mu}_{Y}\right)
$$

There are no maximally correlated pairs of random variables. But there are statistically correlated pairs if $\widehat{\mu} \neq \widehat{\mu}_{X} \times \widehat{\mu}_{Y}$.

What's the Big Idea? Numerical Invariants

Multipartite
Measures \qquad
(CO) HOMOLOGY

Graded
Vector Spaces

What's the Big Idea? Numerical Invariants

The Index of A Commutative Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

The Index of A Commutative Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

$$
\mathfrak{X}_{q}\left[G_{\mu}\right]=\underbrace{\left(\sum_{i} p_{i}\right)^{q}}_{\operatorname{dim}_{q} \mu_{\emptyset}}-\underbrace{2 \sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X} \boxplus \mu_{Y}\right)}+\underbrace{\sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X Y}\right)}=-\underset{\text { Char }}{\text { Euler }}\left[\mu_{\emptyset} \leftarrow \mu_{X} \boxplus \mu_{Y} \overleftarrow{\leftarrow} \mu_{X Y}\right]
$$

The Index of A Commutative Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

$$
\begin{aligned}
& \mathfrak{X}_{q}\left[G_{\mu}\right]=\underbrace{\left(\sum_{i} p_{i}\right)^{q}}_{\operatorname{dim}_{q} \mu_{\emptyset}}-\underbrace{2 \sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X} \boxplus \mu_{Y}\right)}+\underbrace{\sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X Y}\right)}=-\underset{\text { Char }}{\text { Euler }\left[\mu_{\emptyset} \leftarrow \mu_{X} \boxplus \mu_{Y} \leftarrow \mu_{X Y}\right]} \\
& \mathfrak{X}_{0}\left(G_{\mu}\right)=1-2(3)+3=-2=1-\chi\left(G_{\mu}\right)=-(\overbrace{\operatorname{dim} \widetilde{H}^{0}}^{2}-\overbrace{\operatorname{dim} \widetilde{H}^{1}}^{0})
\end{aligned}
$$

The Index of A Commutative Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

$$
\mathfrak{X}_{q}\left[G_{\mu}\right]=\underbrace{\left(\sum_{i} p_{i}\right)^{q}}_{\operatorname{dim}_{q} \mu_{\emptyset}}-\underbrace{2 \sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X} \boxplus \mu_{Y}\right)}+\underbrace{\sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X Y}\right)}=-\underset{\operatorname{Char}}{\operatorname{Euler}}\left[\mu_{\emptyset} \leftarrow \mu_{X} \boxplus \mu_{Y} \overleftarrow{\leftarrow} \mu_{X Y}\right]
$$

$$
\mathfrak{X}_{0}\left(G_{\mu}\right)=1-2(3)+3=-2=1-\chi\left(G_{\mu}\right)=-(\overbrace{\operatorname{dim} \widetilde{H}^{0}}^{2}-\overbrace{\operatorname{dim} \widetilde{H}^{1}}^{0})
$$

$$
\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}_{q}\left(G_{\mu}\right)=\operatorname{Mass}(\mu) \log [\operatorname{Mass}(\mu)]-\sum_{i} p_{i} \log \left(p_{i}\right)
$$

The Index of A Commutative Bipartite Measure

Support of $\widehat{\mu}: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

$\mathfrak{X}_{q}\left[G_{\mu}\right]=\underbrace{\left(\sum_{i} p_{i}\right)^{q}}_{\operatorname{dim}_{q} \mu_{\emptyset}}-\underbrace{2 \sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X} \boxplus \mu_{Y}\right)}+\underbrace{\sum_{i}\left(p_{i}\right)^{q}}_{\operatorname{dim}_{q}\left(\mu_{X Y}\right)}=-\underset{\operatorname{Char}}{\operatorname{Euler}}\left[\mu_{\emptyset} \leftarrow \mu_{X} \boxplus \mu_{Y} \overleftarrow{\leftarrow} \mu_{X Y}\right]$
$\mathfrak{X}_{0}\left(G_{\mu}\right)=1-2(3)+3=-2=1-\chi\left(G_{\mu}\right)=-(\overbrace{\operatorname{dim} \widetilde{H}^{0}}^{2}-\overbrace{\operatorname{dim} \widetilde{H}^{1}}^{0})$
$\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}_{q}\left(G_{\mu}\right)=\operatorname{Mass}(\mu) \log [\operatorname{Mass}(\mu)]-\sum_{i} p_{i} \log \left(p_{i}\right)=S_{X}+S_{Y}-S_{X Y}$

What's the Big Idea? Mysteries!

What's the Big Idea? Mysteries!

What's a Measure?

Positive means $\mu\left(r^{*} r\right) \geq 0$

See Dmitri Pavlov's Gelfand-type duality for commutative von Neumann algebras, arXiv:2005.05284.

What's a Measure?

"von Neumann algebra"
"measure" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$. $\mu: R \longrightarrow \mathbb{C}$

What's a Measure?

"von Neumann algebra" "measure" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$.

$$
\mu: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	Measure μ
Fun $_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\mu(f)=\sum_{\omega \in \Omega} \widehat{\mu}_{\omega} f(\omega), \widehat{\mu}_{\omega} \in \mathbb{R}_{\geq 0}$

What's a Measure?

"von Neumann algebra" "measure" $=($ normal $)$ positive linear functional on a $\overparen{W^{*} \text {-algebra }} R$.

$$
\mu: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	Measure μ
$\operatorname{Fun}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\mu(f)=\sum_{\omega \in \Omega} \widehat{\mu}_{\omega} f(\omega), \widehat{\mu}_{\omega} \in \mathbb{R}_{\geq 0}$
$L^{\infty}\left(\Omega, \Sigma_{\Omega}\right)$	$\mu(f)=\int_{\Omega} f d \mu$

What's a Measure?

"von Neumann algebra" "measure" $=($ normal $)$ positive linear functional on a $\overparen{W^{*} \text {-algebra }} R$.

$$
\mu: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	Measure μ
$\operatorname{Fun}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\mu(f)=\sum_{\omega \in \Omega} \widehat{\mu}_{\omega} f(\omega), \widehat{\mu}_{\omega} \in \mathbb{R}_{\geq 0}$
$L^{\infty}\left(\Omega, \Sigma_{\Omega}\right)$	$\mu(f)=\int_{\Omega} f d \mu$
$B \mathcal{H}$	$\mu(r)=\operatorname{Tr}_{\mathcal{H}}[\widehat{\mu} r], \widehat{\mu}$ trace class

What's a Measure?

"von Neumann algebra" "measure" $=($ normal $)$ positive linear functional on a $\overparen{W^{*} \text {-algebra }} R$.

$$
\mu: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	Measure μ
$\operatorname{Fun}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\mu(f)=\sum_{\omega \in \Omega} \widehat{\mu}_{\omega} f(\omega), \widehat{\mu}_{\omega} \in \mathbb{R}_{\geq 0}$
$L^{\infty}\left(\Omega, \Sigma_{\Omega}\right)$	$\mu(f)=\int_{\Omega} f d \mu$
$B \mathcal{H}$	$\mu(r)=\operatorname{Tr}_{\mathcal{H}}[\widehat{\mu} r], \widehat{\mu}$ trace class
$\prod_{i=1}^{n} \operatorname{End}\left(\mathcal{H}_{i}\right)$	$\mu\left(r_{1}, \cdots, r_{n}\right)=\sum_{i} \operatorname{Tr}_{\mathcal{H}_{i}}\left[\widehat{\mu}^{(i)} r_{i}\right]$

The Category of Measures

Fix an algebra of random variables R with measures μ and ν : $\mu \leq \nu$ if $\mu\left(r^{*} r\right) \leq \nu\left(r^{*} r\right)$ for all $r \in R$.

The Category of Measures

Fix an algebra of random variables R with measures μ and ν :
$\mu \leq \nu$ if $\mu\left(r^{*} r\right) \leq \nu\left(r^{*} r\right)$ for all $r \in R$.

Definition

Meas $_{R}$ is the category whose objects are measures $\mu: R \rightarrow \mathbb{C}$ and with a unique morphism $\mu \rightarrow \nu$ if $\mu \leq \nu$.

The Category of Measures

The Category of Measures

Definition

Meas is the category with objects given by measures (R, μ) for any R;

Algebras

The Category of Measures

Definition

Meas is the category with objects given by measures (R, μ) for any R; a morphism $f:(R, \mu) \rightarrow(Q, \omega)$ given by an "underlying" homomorphism $\underline{f}: Q \rightarrow R$ such that $\mu \circ \underline{f} \leq \omega$.

Algebras

The Category of Measures: Properties

Meas has:

- Coproducts ("disjoint union measures"):

$$
\begin{aligned}
\mu \boxplus \omega: R \times Q & \longrightarrow \mathbb{C} \\
(r, q) & \longmapsto \mu(r)+\omega(q)
\end{aligned}
$$

- Monoidal \otimes products ("product measures"):

$$
\begin{aligned}
\mu \otimes \omega: R \otimes Q & \longrightarrow \mathbb{C} \\
r \otimes q & \longmapsto \mu(r) \omega(q)
\end{aligned}
$$

The Category of Measures: Properties

Meas has:

- Coproducts ("disjoint union measures"):

$$
\begin{aligned}
\mu \boxplus \omega: R \times Q & \longrightarrow \mathbb{C} \\
(r, q) & \longmapsto \mu(r)+\omega(q)
\end{aligned}
$$

- Monoidal \otimes products ("product measures"):

$$
\begin{aligned}
\mu \otimes \omega: R \otimes Q & \longrightarrow \mathbb{C} \\
r \otimes q & \longmapsto \mu(r) \omega(q)
\end{aligned}
$$

- Rescaling: $\left(\mathbb{R}_{\geq 0}, \times\right) \rightarrow(\operatorname{End}($ Meas $), \circ)$.
- The total mass functor:

$$
\begin{aligned}
\text { Mass: }(\text { Meas, } \otimes) & \longrightarrow\left(\mathbb{R}_{\geq 0}, \times\right) \\
\mu & \longmapsto \mu(1) \\
(\mu \leq \omega) & \longmapsto(\mu(1) \leq \omega(1))
\end{aligned}
$$

The Category of Measures: Dimension

There is a homomorphism:

$\operatorname{dim}(\mu \boxplus \nu)=\operatorname{dim}(\mu)+\operatorname{dim}(\nu)$ and $\operatorname{dim}(\mu \otimes \nu)=\operatorname{dim}(\mu) \operatorname{dim}(\nu)$.

The Category of Measures: Dimension

There is a homomorphism:

$\operatorname{dim}(\mu \boxplus \nu)=\operatorname{dim}(\mu)+\operatorname{dim}(\nu)$ and $\operatorname{dim}(\mu \otimes \nu)=\operatorname{dim}(\mu) \operatorname{dim}(\nu)$. For a commutative measure $\widehat{\mu}: \Omega \rightarrow \mathbb{R}_{\geq 0}(q \in \mathbb{C})$:

$$
\operatorname{dim}_{q}(\mu)=\sum_{\omega \in \Omega} \widehat{\mu}(\omega)^{q}
$$

The Category of Measures: Dimension

There is a homomorphism:

$\operatorname{dim}(\mu \boxplus \nu)=\operatorname{dim}(\mu)+\operatorname{dim}(\nu)$ and $\operatorname{dim}(\mu \otimes \nu)=\operatorname{dim}(\mu) \operatorname{dim}(\nu)$.
For a commutative measure $\widehat{\mu}: \Omega \rightarrow \mathbb{R}_{\geq 0}(q \in \mathbb{C})$:

$$
\operatorname{dim}_{q}(\mu)=\sum_{\omega \in \Omega} \widehat{\mu}(\omega)^{q}
$$

Note:

$$
\operatorname{dim}_{0}(\mu):=\lim _{q \rightarrow 0} \operatorname{dim}_{q}(\mu)=|\operatorname{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}
$$

The Category of Measures: the L^{2} functor

Note:

$$
\operatorname{dim}_{0}(\mu):=\lim _{q \rightarrow 0} \operatorname{dim}_{q}(\mu)=|\operatorname{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}
$$

Alternatively,

$$
\operatorname{dim}_{0} \widehat{\mu}=\operatorname{dim} L^{2}[\operatorname{Supp}(\widehat{\mu})]
$$

The Category of Measures: the L^{2} functor

Note:

$$
\operatorname{dim}_{0}(\mu):=\lim _{q \rightarrow 0} \operatorname{dim}_{q}(\mu)=|\operatorname{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}
$$

Alternatively,

$$
\operatorname{dim}_{0} \widehat{\mu}=\operatorname{dim} L^{2}[\operatorname{Supp}(\widehat{\mu})]
$$

$L^{2}[\operatorname{Supp}(\widehat{\mu})]$ is the classical version of the Gelfand-Neumark-Segal representation of $L^{\infty}(\Omega)$ associated to μ.

The Category of Measures: the L^{2} functor

Note:

$$
\operatorname{dim}_{0}(\mu):=\lim _{q \rightarrow 0} \operatorname{dim}_{q}(\mu)=|\operatorname{Supp}(\widehat{\mu})| \in \mathbb{Z}_{\geq 0}
$$

Alternatively,

$$
\operatorname{dim}_{0} \widehat{\mu}=\operatorname{dim} L^{2}[\operatorname{Supp}(\widehat{\mu})]
$$

$L^{2}[\operatorname{Supp}(\widehat{\mu})]$ is the classical version of the Gelfand-Neumark-Segal representation of $L^{\infty}(\Omega)$ associated to μ. This is secretly a functor

$$
\text { GNS : Meas }{ }^{\mathrm{op}} \longrightarrow \text { Rep }
$$

Used in the construction of the cohomology of a measure.

Measure Families

A measure family over a measurable space $\left(P, \Sigma_{P}\right)$ is a functor ("pre-cosheaf")

$$
\text { M: } \boldsymbol{\Sigma}_{P} \longrightarrow \text { Meas }
$$

where $\boldsymbol{\Sigma}_{P}$ is a category with:

- Objects given by measurable sets;
- A unique morphism $T \rightarrow V$ if $T \subseteq V$.

Measure Families

A measure family over a measurable space $\left(P, \Sigma_{P}\right)$ is a functor ("pre-cosheaf")

$$
\text { M }: \boldsymbol{\Sigma}_{P} \longrightarrow \text { Meas }
$$

where $\boldsymbol{\Sigma}_{P}$ is a category with:

- Objects given by measurable sets;
- A unique morphism $T \rightarrow V$ if $T \subseteq V$.

For every measurable subset of $T \subseteq P$ we have a measure $\mathrm{M}(T): R_{T} \rightarrow \mathbb{C}$.

Measure Families (Category Of)

A measure family over a measurable space $\left(P, \Sigma_{P}\right)$ is a functor ("pre-cosheaf")

$$
\text { M }: \boldsymbol{\Sigma}_{P} \longrightarrow \text { Meas }
$$

- There is a category of measure families equipped with a version of \boxplus (families over disjoint union sets) and \otimes (families over product sets)

Measure Families (Category Of)

A measure family over a measurable space $\left(P, \Sigma_{P}\right)$ is a functor ("pre-cosheaf")

$$
\text { M }: \boldsymbol{\Sigma}_{P} \longrightarrow \text { Meas }
$$

- There is a category of measure families equipped with a version of \boxplus (families over disjoint union sets) and \otimes (families over product sets)
- There is a subcategory MeasFam ${ }^{\text {fin }}$ of measure families over finite sets $\left(\boldsymbol{\Sigma}_{P}=\operatorname{Subsets}(P)\right)$.

Measure Families (Category Of)

A measure family over a measurable space $\left(P, \Sigma_{P}\right)$ is a functor ("pre-cosheaf")

$$
\text { M: } \boldsymbol{\Sigma}_{P} \longrightarrow \text { Meas }
$$

- There is a category of measure families equipped with a version of \boxplus (families over disjoint union sets) and \otimes (families over product sets)
- There is a subcategory MeasFam ${ }^{\text {fin }}$ of measure families over finite sets $\left(\Sigma_{P}=\operatorname{Subsets}(P)\right)$. \longleftarrow our focus

Measure Families from Measures

Let $\widetilde{\mu}$: $\operatorname{Subsets}(\Omega) \rightarrow \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω. There is a measure family:
$\mathrm{A}^{\mu}: \operatorname{Subsets}(\Omega) \longrightarrow$ Meas

$$
T \longmapsto\left(\operatorname{Rand}_{\mathbb{C}}(T),\left.\mu\right|_{T}\right)
$$

Measure Families from Measures

Let $\widetilde{\mu}: \operatorname{Subsets}(\Omega) \rightarrow \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω. There is a measure family:
$\mathrm{A}^{\mu}: \operatorname{Subsets}(\Omega) \longrightarrow$ Meas

$$
\begin{aligned}
T & \longmapsto\left(\operatorname{Rand}_{\mathbb{C}}(T),\left.\mu\right|_{T}\right) \\
(T \subseteq V) & \longmapsto \underbrace{\operatorname{restrict}^{V}{ }_{T}}_{\operatorname{Rand}_{\mathbb{C}}(V) \rightarrow \operatorname{Rand}_{\mathbb{C}}(T)}:\left.\left.\mu\right|_{T} \rightarrow \mu\right|_{V}
\end{aligned}
$$

Measure Families from Measures

Let $\widetilde{\mu}: \operatorname{Subsets}(\Omega) \rightarrow \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω. There is a measure family:
$\mathrm{A}^{\mu}: \operatorname{Subsets}(\Omega) \longrightarrow$ Meas

$$
\begin{aligned}
T & \longmapsto\left(\operatorname{Rand}_{\mathbb{C}}(T),\left.\mu\right|_{T}\right) \\
(T \subseteq V) & \longmapsto \underbrace{\operatorname{restrict}^{V}{ }_{T}}_{\operatorname{Rand}_{\mathbb{C}}(V) \rightarrow \operatorname{Rand}_{\mathbb{C}}(T)}:\left.\left.\mu\right|_{T} \rightarrow \mu\right|_{V}
\end{aligned}
$$

Subsets $(\Omega) \xrightarrow{\mathrm{A}^{\mu}}$ Meas

By additivity: $\left.\mathrm{A}^{\mu} \cong \boxplus_{\omega \in \Omega} \mathrm{A}^{\mu}\right|_{\{\omega\}}$:

Measure Families from Measures

Let $\widetilde{\mu}: \operatorname{Subsets}(\Omega) \rightarrow \mathbb{R}_{\geq 0}$ be a measure on a finite set Ω. There is a measure family:

$$
\mathrm{A}^{\mu}: \text { Subsets }(\Omega) \longrightarrow \text { Meas }
$$

$$
\begin{aligned}
T & \longmapsto\left(\operatorname{Rand}_{\mathbb{C}}(T),\left.\mu\right|_{T}\right) \\
(T \subseteq V) & \longmapsto \underbrace{\operatorname{restrict}^{V}{ }_{T}}_{\operatorname{Rand}_{\mathbb{C}}(V) \rightarrow \operatorname{Rand}_{\mathbb{C}}(T)}:\left.\left.\mu\right|_{T} \rightarrow \mu\right|_{V}
\end{aligned}
$$

Subsets $(\Omega) \xrightarrow{\mathrm{A}^{\mu}}$ Meas

By additivity: $\left.\mathrm{A}^{\mu} \cong \boxplus_{\omega \in \Omega} \mathrm{A}^{\mu}\right|_{\{\omega\}}$: cosheaf-like: global data comes from "additively" gluing together local data.

Measure Families from Multipartite Measures

$$
\text { bipartite measure } \boldsymbol{\mu}=\begin{gathered}
R_{\mathrm{A}}, R_{\mathrm{B}} \text { a pair of algebras } \\
\mu: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

Measure Families from Multipartite Measures

$$
\text { bipartite measure } \boldsymbol{\mu}=\begin{gathered}
R_{\mathrm{A}}, R_{\mathrm{B}} \text { a pair of algebras } \\
\mu: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

We have homomorphisms

$$
\begin{array}{rlrl}
\epsilon_{\mathrm{A}}: R_{\mathrm{A}} & \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} & \epsilon_{\mathrm{B}}: R_{\mathrm{B}} & \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} \\
a & \longmapsto a \otimes 1 & b & \longmapsto
\end{array}
$$

Measure Families from Multipartite Measures

$$
\text { bipartite measure } \boldsymbol{\mu}=\begin{gathered}
R_{\mathrm{A}}, R_{\mathrm{B}} \text { a pair of algebras } \\
\mu: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

We have homomorphisms

$$
\begin{array}{rlrl}
\epsilon_{\mathrm{A}}: R_{\mathrm{A}} & \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} & \epsilon_{\mathrm{B}}: R_{\mathrm{B}} & \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} \\
a & \longmapsto a \otimes 1 & b & \longmapsto 1 \otimes b
\end{array}
$$

Giving us the reduced measures ("partial traces" / "marginal measures")

$$
\begin{array}{rlrl}
\mu_{\mathrm{A}}:=\mu \circ \epsilon_{\mathrm{A}}: R_{\mathrm{A}} & \mu_{\mathrm{B}}:=\mu \circ \epsilon_{\mathrm{B}}: R_{\mathrm{B}} \longrightarrow \mathbb{C} \\
& a \longmapsto \mu(a \otimes 1) & b \longmapsto \mu(1 \otimes b)
\end{array}
$$

Measure Families from Multipartite Measures

$$
\text { multipartite measure } \boldsymbol{\mu}=\begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\mu: \otimes_{p \in P} R_{P} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

Measure Families from Multipartite Measures

$$
\text { multipartite measure } \boldsymbol{\mu}=\begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\mu: \otimes_{p \in P} R_{p} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

For any $T \subseteq P$ we have a reduced measure $\mu_{T}: \bigotimes R_{t} \rightarrow \mathbb{C}$. $t \in T$ $\underbrace{t \in T}_{R_{T}}$

Measure Families from Multipartite Measures

$$
\text { multipartite measure } \boldsymbol{\mu}=\begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\mu: \bigotimes_{p \in P} R_{p} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

For any $T \subseteq P$ we have a reduced measure $\mu_{T}: \bigotimes R_{t} \rightarrow \mathbb{C}$.

$$
t \in T
$$

$\mathrm{C}_{\boldsymbol{\mu}}:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ Meas

Measure Families from Multipartite Measures

$$
\text { multipartite measure } \boldsymbol{\mu}=\begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\mu: \otimes_{p \in P} R_{p} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

For any $T \subseteq P$ we have a reduced measure $\mu_{T}: \bigotimes R_{t} \rightarrow \mathbb{C}$.

$$
t \in T
$$

$\mathrm{C}_{\boldsymbol{\mu}}:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ Meas

$$
T \longmapsto\left(R_{T}, \mu_{T}\right)
$$

Measure Families from Multipartite Measures

$$
\text { multipartite measure } \boldsymbol{\mu}=\begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\mu: \otimes_{p \in P} R_{p} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

For any $T \subseteq P$ we have a reduced measure $\mu_{T}: \bigotimes R_{t} \rightarrow \mathbb{C}$.

$$
t \in T
$$

$$
\underbrace{}_{R_{T}}
$$

$\mathrm{C}_{\boldsymbol{\mu}}:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ Meas

$$
\begin{aligned}
T & \longmapsto\left(R_{T}, \mu_{T}\right) \\
(T \subseteq U) & \longmapsto \underbrace{\left[(-) \otimes 1_{U \backslash T}: R_{T} \rightarrow R_{U}\right]: \mu_{U} \longrightarrow \mu_{T}}_{\text {"partial trace/integration over } U \backslash T^{\prime \prime}}
\end{aligned}
$$

Measure Families from Multipartite Measures

$$
\text { multipartite measure } \boldsymbol{\mu}=\begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\mu: \bigotimes_{p \in P} R_{p} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

For any $T \subseteq P$ we have a reduced measure $\mu_{T}: \bigotimes R_{t} \rightarrow \mathbb{C}$.

$$
\underbrace{t \in T}_{R_{T}}
$$

$\mathrm{C}_{\boldsymbol{\mu}}:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ Meas

$$
\begin{aligned}
T & \longmapsto\left(R_{T}, \mu_{T}\right) \\
(T \subseteq U) & \longmapsto \underbrace{\left[(-) \otimes 1_{U \backslash T}: R_{T} \rightarrow R_{U}\right]: \mu_{U} \longrightarrow \mu_{T}}_{\text {"partial trace/integration over } U \backslash T^{\prime \prime}}
\end{aligned}
$$

But this isn't a measure family: it isn't covariant out of Subset (P) !

Measure Families from Multipartite Measures

$$
\text { multipartite measure } \boldsymbol{\mu}=\begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\mu: \otimes_{p \in P} R_{p} \xrightarrow{+} \mathbb{C} \text { a measure }
\end{gathered}
$$

For any $T \subseteq P$ we have a reduced measure $\mu_{T}: \bigotimes R_{t} \rightarrow \mathbb{C}$.

$$
\underbrace{t \in T}_{R_{T}}
$$

$\mathrm{C}_{\boldsymbol{\mu}}:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ Meas

$$
\begin{aligned}
T & \longmapsto\left(R_{T}, \mu_{T}\right) \\
(T \subseteq U) & \longmapsto \underbrace{\left[(-) 1_{U \backslash T}: R_{T} \rightarrow R_{U}\right]: \mu_{U} \longrightarrow \mu_{T}}_{\text {"partial trace/integration over } U \backslash T \text { " }}
\end{aligned}
$$

But this isn't a measure family: it isn't covariant out of Subset (P) ! To get a measure family, we define:

$$
\mathrm{M}^{\boldsymbol{\mu}}:=\mathrm{C}_{\boldsymbol{\mu}} \circ \underbrace{(-)^{c}}_{\substack{\text { complementation } \\ \text { functor }}}: \text { Subsets }(P) \longrightarrow \text { Meas }
$$

Toward (Semi-)Simplicial Measures

Let M be a measure family over the set $\{A, B\}$. We have a diagram in Meas:

$$
M(\{A, B\}) \longleftarrow M(\{A\}) \boxplus M(\{B\}) \leftleftarrows M(\emptyset)
$$

Toward (Semi-)Simplicial Measures

Let M be a measure family over the set $\{A, B\}$. We have a diagram in Meas:

$$
M(\{A, B\}) \longleftarrow M(\{A\}) \boxplus M(\{B\}) \longleftarrow M(\emptyset)
$$

These arrows use the coproduct property of \boxplus, e.g.

Čech (Semi)-Simplicial Measures from a Cover

For M a measure family over P : let $\left\{U_{i}\right\}_{i \in I}$ be a measurable cover of P. Define $U_{J}:=\bigcap_{j \in I} U_{j}$ and $U_{\emptyset}=P$. We have (Note: $U_{J} \supseteq U_{K}$ if $\left.J \subseteq K\right)$:

$$
\mathrm{M}\left(U_{\emptyset}\right) \longleftarrow \bigoplus_{|J|=1} \mathrm{M}\left(U_{J}\right) \leftleftarrows \ldots \underset{\vdots}{\leftrightarrows} \bigoplus_{|J|=|I|-1} \mathrm{M}\left(U_{J}\right) \stackrel{\leftrightarrows}{\leftrightarrows} \mathrm{M}\left(U_{l}\right)
$$

Čech (Semi)-Simplicial Measures from a Cover

For M a measure family over P : let $\left\{U_{i}\right\}_{i \in I}$ be a measurable cover of P. Define $U_{J}:=\bigcap_{j \in I} U_{j}$ and $U_{\emptyset}=P$. We have (Note: $U_{J} \supseteq U_{K}$ if $J \subseteq K$):

$$
\mathrm{M}\left(U_{\emptyset}\right) \longleftarrow \bigoplus_{|J|=1} \mathrm{M}\left(U_{J}\right) \leftleftarrows \cdots \underset{\vdots}{\bigoplus_{|J|=|I|-1}} \mathrm{M}\left(U_{J}\right) \stackrel{\leftrightarrows}{\leftrightarrows} \mathrm{M}\left(U_{l}\right)
$$

Special Case: the complementary cover $\left\{p^{c}\right\}_{p \in P}$ of P :

Čech (Semi)-Simplicial Measures from a Cover

$$
\mathrm{M}\left(\emptyset^{c}\right) \longleftarrow \bigoplus_{|T|=1} \mathrm{M}\left(T^{c}\right) \leftleftarrows \cdots \underset{\vdots}{\leftrightarrows} \bigoplus_{|T|=|P|-1} \mathrm{M}\left(T^{c}\right) \stackrel{\vdots}{\leftrightarrows} \mathrm{M}\left(P^{c}\right)
$$

When $\mathrm{M}=\mathrm{M}^{\mu}$ for a multipartite measure $\boldsymbol{\mu}$, the above becomes:

There's now a few things we can extract from our (semi-)simplicial measure:

- Simplicial complexes
- Cohomology/chain complexes of vector spaces
- The index

There's now a few things we can extract from our (semi-)simplicial measure:

- Simplicial complexes
- Cohomology/chain complexes of vector spaces
- The index \leftarrow our focus

The Index of a Measure Family

The Index of a Measure Family

$$
\begin{aligned}
& =\sum_{d=-1}^{|P|-1}(-1)^{d+1} \operatorname{dim}\left[\underset{|T|=d+1}{\boxplus} M\left(T^{c}\right)\right]
\end{aligned}
$$

The Index of a Measure Family

$$
\begin{aligned}
\mathfrak{X}(\mathrm{M}) & :=-\underset{\mathrm{Char}}{\text { Euler }}\left[\mathrm{M}\left(\not\left(^{c}\right) \longleftarrow \underset{|T|=1}{\bigoplus_{\mathrm{Cl}}} \mathrm{M}\left(T^{c}\right) \leftleftarrows \cdots \underset{|T|=|P|-1}{\leftrightarrows} \mathrm{M}\left(T^{c}\right)^{\overleftarrow{E}} \mathrm{M}\left(P^{c}\right)\right]\right. \\
& =\sum_{d=-1}^{|P|-1}(-1)^{d+1} \operatorname{dim}\left[\bigoplus_{|T|=d+1}^{\leftrightarrows} \mathrm{M}\left(T^{c}\right)\right] \\
& =\sum_{T \subseteq P}(-1)^{|T|} \operatorname{dim}\left[\mathrm{M}\left(T^{c}\right)\right]
\end{aligned}
$$

Some Properties of the Index

$$
\mathfrak{X}(\mathrm{M})=\sum_{T \subseteq P}(-1)^{|T|} \operatorname{dim}\left[\mathrm{M}\left(T^{c}\right)\right] .
$$

- When $q=0, \mathfrak{X}_{0}(\mathrm{M}) \in \mathbb{Z}$. If $\mathrm{M}=\mathrm{M}^{\boldsymbol{\mu}}$ for $\boldsymbol{\mu}$ commutative:

$$
\mathfrak{X}_{0}\left(\mathrm{M}^{\mu}\right)=\sum_{T \subseteq P}(-1)^{|T|}\left|\operatorname{Supp}\left(\mu_{T}\right)\right| .
$$

Some Properties of the Index

$$
\mathfrak{X}(\mathrm{M})=\sum_{T \subseteq P}(-1)^{|T|} \operatorname{dim}\left[\mathrm{M}\left(T^{c}\right)\right] .
$$

- When $q=0, \mathfrak{X}_{0}(\mathrm{M}) \in \mathbb{Z}$. If $\mathrm{M}=\mathrm{M}^{\boldsymbol{\mu}}$ for $\boldsymbol{\mu}$ commutative:

$$
\mathfrak{X}_{0}\left(\mathrm{M}^{\mu}\right)=\sum_{T \subseteq P}(-1)^{|T|}\left|\operatorname{Supp}\left(\mu_{T}\right)\right| .
$$

- $\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}\left(\mathrm{M}^{\mu}\right)$ is multipartite mutual information:

$$
I(\mu)=\sum_{T \subseteq P}(-1)^{|T|-1} S\left(\mu_{T}\right)=\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}\left(\mathrm{M}^{\mu}\right)
$$

Some Properties of the Index

$$
\mathfrak{X}(\mathrm{M})=\sum_{T \subseteq P}(-1)^{|T|} \operatorname{dim}\left[\mathrm{M}\left(T^{c}\right)\right] .
$$

- When $q=0, \mathfrak{X}_{0}(\mathrm{M}) \in \mathbb{Z}$. If $\mathrm{M}=\mathrm{M}^{\boldsymbol{\mu}}$ for $\boldsymbol{\mu}$ commutative:

$$
\mathfrak{X}_{0}\left(\mathrm{M}^{\mu}\right)=\sum_{T \subseteq P}(-1)^{|T|}\left|\operatorname{Supp}\left(\mu_{T}\right)\right| .
$$

- $\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}\left(\mathrm{M}^{\mu}\right)$ is multipartite mutual information:

$$
I(\mu)=\sum_{T \subseteq P}(-1)^{|T|-1} S\left(\mu_{T}\right)=\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}\left(\mathrm{M}^{\mu}\right)
$$

$I(\boldsymbol{\mu})=0$ if $\boldsymbol{\mu}=\boldsymbol{\mu}_{\boldsymbol{T}} \otimes \boldsymbol{\mu}_{V}$ for any subsystems T and V.

Some Properties of the Index

$$
\mathfrak{X}(\mathrm{M})=\sum_{T \subseteq P}(-1)^{|T|} \operatorname{dim}\left[\mathrm{M}\left(T^{c}\right)\right] .
$$

- When $q=0, \mathfrak{X}_{0}(\mathrm{M}) \in \mathbb{Z}$. If $\mathrm{M}=\mathrm{M}^{\boldsymbol{\mu}}$ for $\boldsymbol{\mu}$ commutative:

$$
\mathfrak{X}_{0}\left(\mathrm{M}^{\mu}\right)=\sum_{T \subseteq P}(-1)^{|T|}\left|\operatorname{Supp}\left(\mu_{T}\right)\right| .
$$

- $\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}\left(\mathrm{M}^{\mu}\right)$ is multipartite mutual information:

$$
I(\mu)=\sum_{T \subseteq P}(-1)^{|T|-1} S\left(\mu_{T}\right)=\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}\left(\mathrm{M}^{\mu}\right)
$$

$I(\boldsymbol{\mu})=0$ if $\boldsymbol{\mu}=\boldsymbol{\mu}_{T} \otimes \boldsymbol{\mu}_{V}$ for any subsystems T and V.

- $\frac{1}{q-1} \mathfrak{X}_{q}\left(\mathrm{M}^{\mu}\right)$ is Tsallis-deformed multipartite mutual information.

Some Properties of the Index

$$
\mathfrak{X}(\mu)=\sum_{T \subseteq P}(-1)^{|T|} \operatorname{dim}\left[\mathrm{M}\left(T^{c}\right)\right]
$$

Theorem

\mathfrak{X} defines a homomorphism $K_{0}\left(\right.$ MeasFam $\left.^{\text {fin }}\right) \rightarrow \mathcal{O}(\mathbb{C})$: i.e.

- $\mathfrak{X}(\mathrm{M} \otimes \mathrm{N})=\mathfrak{X}(\mathrm{M}) \mathfrak{X}(\mathrm{N})$
- $\mathfrak{X}(\mathrm{M} \boxplus \mathrm{N})=\mathfrak{X}(\mathrm{M})+\mathfrak{X}(\mathrm{N})$

Some Properties of the Index

$$
\mathfrak{X}(\mu)=\sum_{T \subseteq P}(-1)^{|T|} \operatorname{dim}\left[\mathrm{M}\left(T^{c}\right)\right]
$$

Theorem

\mathfrak{X} defines a homomorphism $K_{0}\left(\right.$ MeasFam $\left.^{\text {fin }}\right) \rightarrow \mathcal{O}(\mathbb{C})$: i.e.

- $\mathfrak{X}(\mathrm{M} \otimes \mathrm{N})=\mathfrak{X}(\mathrm{M}) \mathfrak{X}(\mathrm{N})$
- $\mathfrak{X}(\mathrm{M} \boxplus \mathrm{N})=\mathfrak{X}(\mathrm{M})+\mathfrak{X}(\mathrm{N})$

Theorem

$\mathfrak{X}(\mathrm{M})=0$ if $|P| \geq 2$ and $\left.\left.\mathrm{M} \cong \mathrm{M}\right|_{T} \boxplus \mathrm{M}\right|_{V}$ for any $T, V \subseteq P$.
So $\mathfrak{X}(\mathrm{M})$ detects the failure of additive (\boxplus) descent of data, while $\left.\frac{d}{d q}\right|_{q=1} \mathfrak{X}(\mathrm{M})$ detects the failure of multiplicative (\otimes) descent.

Summary

- Mutual information (and its deformations) emerge naturally as an Euler characteristic (the "index") of some emergent "space".
- Random variables capturing "maximal" non-local correlations between subsystems are captured by cohomology.

Spinoff Work

With Roman Geiko and Greg Moore:

Wiggly arrow: Equivalence with reflective subcategory on top row. Dotted: Requires the data of Morita equivalent W^{*}-algebras.

[^0]: ${ }^{1}$ Based on conversations with G. Moore. See work of Swingle and Balasubramanian, et. al.

[^1]: ${ }^{1}$ Based on conversations with G. Moore. See work of Swingle and Balasubramanian, et. al.

