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N—1
N-partite state VV\? @ H* [N-partite state]
k=0

k . les of (k + 1)-bod ivi
H [N—partlte State] = {tup ese::higiting ()zor?elztg);:]esrators} /{cor'frrell\{ewl'?ilc)ns}v k<N-1
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[(10a) (0al ,108) (08])] € H°(|0AOB) + |1a18))
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Why is this cool?

N-partite state vV

Hk [N—partite state] _ {tuples of (k + 1)-body operators} /{ trivial }’ k< N-—1

exhibiting correlations correlations
H(1® - @ un) =0,k < N — 1
[(10a) (0al[08) (0s[)] € H°(|0A08) + |1a18))

[(ra, 18)] € H(PaB) <= Tr[pasx(ra ® 1g — 1o ® rg8)] = 0, ¥x € B(Has)
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AABB




Why is this cool?

N-partite state vV

Hk [N—partite state] _ {tuples of (k + 1)-body operators} /{ trivial }’ k< N-—1

exhibiting correlations correlations

H (1@ @) =0, k < N —1
[(10a) (0al ,108) (08])] € H°(|0AOB) + |1a18))

[(rA, rB)] € HO(ﬁAB) < Tr[ﬁABx(rA RIg—1A® rB)] = 07 Vx € B(HAB)

rA~rg
AB
“ra and rg are maxmly. correlated”




P € Ha® Hg ® He
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[(raB, rac, r8c)] € H' (1) <=> Tac + Tag e Tac
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Why is this cool?

Cohomology has advantages over mutual information

Ll o (n By 1= Sa + S — Sas € Rxo

Measures how much information is shared by A and B.

Multipartite mutual information:

h=> (-1)"lsreRr

TCP
Is a (sometimes unreliable) measure of information shared by every T C P.
13[|000) + |111)] = K[|001) + |010) + |100)] =0
while for ¢ =0, 1

H*[|000) + |111)] # 0,
H*[|001) -+ |010) + [100)] # 0






Slide showing Non-Commutative Geometry ~» State Index as an Euler
characteristic.



pp € Dens(®pepHp)

State Index € O(C, x Cq x C;)

Tsallis/Rényi Deformed Mutual Information Euler Characteristics of
€ O(Cq x Cy) €z

qg—1

Mutual Information € R



This is a talk about structures in basic Quantum Mechanics (or
probability theory).



This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.



This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.

The generality suggests something deep is to be learned.



Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.

The generality suggests something deep is to be learned.
Possibly new link invariants: L C S3 a link with N-components;?
V1= Zcs[S® - L] € Zcs[T]*N

Corresponding cohomology, Poincaré polynomials, and state indices
are frame-equivariant/independent /link invariants.

!Based on conversations with G. Moore. See work of Swingle and Balasubramanian,
et. al.
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“von Neumann algebra”

“state” = (normal) positive linear functional on a W*-algebra R.
p:R—C
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“state” = (normal) positive linear functional on a W*-algebra R.

“von Neumann algebra”

p:R—C
of Random Variables | State
BH p(r) = Trulpr]
Func(®) = € | p(f) = Teq o ()
—~

L>(X)

[LZQ—)RZO

p(f) = fx fdp

11



What's a state?

“von Neumann algebra”

“state” = (normal) positive linear functional on a W*-algebra R.
p:R—C

Algebra R
of Random Variables

State p

BH
Func(Q) = Cl®

L>°(X)
[17-1 End(#;)
State on
Hi End(’H,')

p(r) = Try[pr]

() =2eq fo f(w)
~~
w:2—R>g

p(f) = [x fdn
pre, - ) = 30 Tra [p0]

Tuple of density states
(B, 7
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What's a state?

“von Neumann algebra”

“state” = (normal) positive linear functional on a W*-algebra R.

Algebra R
of Random Variables

p:R—C
State p

BH
Func(Q) = Cl®

p(r) = Try[pr]

) = Tocq o F()

w:2—R>g
L%2(X) p(f) = Jx fdu
[Ty End(H) | (o o) = 5 T [0
State on Tuple of density states
[T End(H) <7 (@0, . 50)
Stante on Tuple of non-negative reals

i=1

(u®, -l

11



- . " Ra, Rg a pair of algebras
bipartite state” = +
p: Ra ® Rg — C a state
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What's a Bipartite State? (roughly)

. . " Ra, Rg a pair of algebras
bipartite state” = +
p: Ra ® Rg — C a state

We have homomorphisms

€an - Rn — Ra ® R eg: Re — Ra ® R
ar—a®l b—1®b

Giving us the reduced states ( “partial traces”/ “partial measures”)

pa=poep: Ry — C pg :=poeg:Rg — C
ar— p(a®1) b+— p(1® b)

12



Bipartite p is factorizable if p(1)p = pa ® pg.
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Bipartite p is factorizable if p(1)p = pa ® pg.

Y € Ha @ Hg @ Trapens[v @ ¢V(-)]
is factorizable is factorizable
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Bipartite p is factorizable if p(1)p = pa ® pg.
Y € Ha ® Hp Traaens[ @ ¥V (=)]
is factorizable @ is factorizable

w: X xY — [0,1]

a probability measure describes @ its gxpectat_lon value
. . is factorizable
independent random variables.
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Bipartite p is factorizable if p(1)p = pa ® pg.
Y € Ha ® Hp Traaens[ @ ¥V (=)]
is factorizable @ is factorizable

w: X xY — [0,1]

a probability measure describes @ its gxpectat_lon value
. . is factorizable
independent random variables.
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o ow (Rp)pep tuple of algebras

“multipartite state” "=
p: Qpecp Ro — C astate

For any subset T C P we have algebras Rt := @, R: (R) — C), and
maps

€ET . RT — RP
Define the reduced states

pr =poer: Rt —C

14



Why Geometry? Homological Obstructions, that's why

p:RyA®Rg — C

Descent of data to subsystems:

— all global data comes from gluing
( Factorizability JJ\/\/\/\> local data: p(zij r}"\ ® T.JB) _
ﬁ 2 pa(ra)pe(rg)-

- - Obstruction to descent: p(ra®rg) #
( Failure to Factorize )"\/\/\/\> ﬁPA(TA)PB(TB) for some (ra,7g)
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— all global data comes from gluing
( Factorizability Toreall dletiag P(Eij ri @) =
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\,\Ow\«:\ e\

,4\/ Masen B

- - Obstruction to descent: |p (ra®rg) #
[ Failure to Factorize ﬁPA(TA)pB(TB) for some (ra, 7g)

15



Why Geometry? Homological Obstructions, that's why

p:RyA®Rg — C

Descent of data to subsystems:

— all global data comes from gluing
( Factorizability JJ\/\/\/\> local data: p(zij r}"\ ® T.JB) _
ﬁ 2 pa(ra)pe(rg)-

- - Obstruction to descent: p(ra®rg) #
( Failure to Factorize )"\/\/\/\> ﬁPA(TA)PB(TB) for some (ra,7g)

H(p) = {(ra,r8) € Ra x rz: p(1)p(ra @ rg) # pa(ra)ps(rs)}
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Why Geometry? Homological Obstructions, that's why

p:RyA®Rg — C

Descent of data to subsystems:

— all global data comes from gluing
( Factorizability JJ\/\/\/\> local data: p(zij r}"\ ® T.JB) _
ﬁ 2 pa(ra)pe(rg)-

- - Obstruction to descent: p(ra®rg) #
( Failure to Factorize )"\/\/\/\> ﬁPA(TA)PB(TB) for some (ra,7g)

H°[p] = {(ra, rs) € Ra x Rg: ra and rg are mxmly. correlated}/C((1,1))

15
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Mutual Information:

h(pas) = S(pa) + S(ps) — S(pas)
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Mutual Information:

h(pas) = S(pa) + S(ps) — S(pas)

Recall: States on [[7_; End(#;) <— tuples of density states
(ﬁ(l)a"' ,ﬁ(n))
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Mutual Info. as an Euler Char.

Mutual Information:

h(pag) = S(pa) + S(pB) — S(par)

Recall: States on [[;_; End(#;) <— tuples of density states
(pM, .-, pm)

s[(" ]—ZTr[ D log 5]

Multipartite Mutual information:

he(pp) = D (-1)I71S(p7)

0TCP

lour|(pqQ ® pr) =0

17



Why Geometry? Mutual Info looks like an Euler
Characteristic

C a sufficiently nice ®-category with all coproducts @&

An Euler characteristic (valued in a ring R) is an assignment that
takes in any object A of C and outputs x(A) € R such that:

X(A) only depends on A up to iso.

X(A® B) = x(A) + x(B)

x(A® B) = x(A)x(B)
equivalently x is a homomorphism

X : Ko(C) = R

for some ring R.

18



I{(pp ® ¢q) = 0 not Ip(pp)l(¢q)
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Recall the GNS construction:

piA—CEA (121A/3,] 1))

20



Recall the GNS construction:
GNS
p:A—C—=2 (L[A/T,],[1])
This is secretly a functor

GNS, : Statea — Repy

|| Statey | Rep,
Objects Fositivegneardunls | x-representations of A
p—r¢
Morphisms ) (bounded) intertwiners

p < Cyp for some C >0

20
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The Category of States

GNS : State®® — Rep

State Rep
. Algebras and "left modules”
Objects (R, p) (R. xM)
: “duals” of algebra maps Algebra maps + intertwiners
Morphisms playing nicely with states playing nicely together
Classical sum Products
(co)products (A, p)H(B,p) =(AX B,pXx¢) (A M) x (B, N) =

(A xB, M x N)

22



The Category of States

GNS : State®® — Rep

State Rep
. Algebras and "left modules”
Objects (R, p) (R, kM)
: “duals” of algebra maps Algebra maps + intertwiners
l\/Iorphlsms playing nicely with states playing nicely together
duct Classical sum (A A/%ridtjéts,v) _
(co)products || (a )& (B, %) < (A B,p x ¢) g VA

ans(®) = [ [

22



A multipartite state over a finite set P is a functor

p : Subsets(P)°? —; State

23



A multipartite state over a finite set P is a functor

p : Subsets(P)°? —; State
T +— (RT, pT)
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A multipartite state over a finite set P is a functor

p : Subsets(P)°? —; State
T +— (RT,pT)
(TCU)— ()@ lpr: Rr — Rl :pu — pT
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A multipartite state over a finite set P is a functor

p : Subsets(P)°? —; State
T +— (Rr,p1)
(TCU)— [(F)@1ng: Rr — Rul" i pu — pr

TV
“partial trace over U\T"

23



(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor

p : Subsets(P)°? — State
T +— (RT,pT)
(TCU)— [(m) @17 Rr — Rul" i pu — pT

“partial trace over U\T"

Can make this covariant using complementation on sets, then use Cech
theory to construct a “simplicial state”

— —
— — «—
H
m—Hr=HBer= . H e . o
N — 1 arrows N arrows

“partial traces”

23



(Non-Comm.) Geometry from a Multipartite State

Po BHPT:EHPTE' EE| PT:

|T|=1 | T|=2 — |T|= <'—

, GNS
v

R
ans(pg) — [ aws(er) = ] ews(or)— H GNS(pT) GNS(pp)
C |T|=1 |T|=2 —>\T| N-1

Forget Algebra
+Alternating sum

of arrows
1 dN dN—l
0-c e 1T cws(er) LN 1T cws(er) <, .4 GNS(pT) T GNS(pp) — 0

|T|=1 |T|=2 |T|=N-1

24
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Summary

Mutual information (and its deformations) of a multipartite state
emerge naturally from the Euler characteristic (the “state index”) of
some canonically associated non-commutative “space.”

The precise operators/random variables capturing non-local
correlations are captured by cohomology.

Similar to how cohomology is a finer invariant than an Euler
characteristic, cohomology is finer than mutual information.

26



Software

Software computing cohomology/Poincaré polynomials is available at
github.com/tmainero.

Phase 1 Phase 3
Phase 2 -
Insert N-partite Density Profit:
State py1,.. v} € ? Deg_rele N_t; 1 P?t'_y-
N . ° nomials with positive
Dens(@i=1 #1) integer coefficients

27


github.com/tmainero

