The Secret Topological Life of Shared Information

Tom Mainiero

Rutgers University
July 28, 2020

What's the Big Idea?

Multipartite
State

$$
\begin{aligned}
& \cdot \psi \in \bigotimes_{s \in P}^{\otimes} \mathcal{H}_{s} \\
& \cdot \hat{p} \in \operatorname{Dens}\left(\bigotimes_{s \in P} \mathcal{H}_{s}\right) \\
& \cdot \mu: \prod_{s \in P} \Omega_{s} \longrightarrow \mathbb{R}_{\geq 0}
\end{aligned}
$$

What's the Big Idea?

$$
\begin{aligned}
& \begin{array}{l}
\text { Multipartite } \\
\quad \text { State } \\
\cdot \psi \in \otimes_{S \in P} \mathcal{H}_{s} \\
\cdot \hat{p} \in \operatorname{Doss}\left(\otimes_{S \in P} \mathcal{H}_{s}\right) \\
\cdot \mu: \prod_{s \in P} \Omega_{s} \longrightarrow \mathbb{R}_{\geq 0}
\end{array} \quad \text { Info. }
\end{aligned}
$$

What's the Big Idea?

What's the Big Idea?

What's the Big Idea?

What's the Big Idea?

Why is this cool?

$$
N \text {-partite state } \rightsquigarrow \not \bigoplus_{k=0}^{N-1} H^{k}[N \text {-partite state }]
$$

$H^{k}[N$-partite state $]=\left\{\begin{array}{c}\text { tuples of }(k+1) \text {-body operators } \\ \text { exhibiting correlations }\end{array}\right\} /\left\{\begin{array}{c}\text { trivial }\end{array}\right\}, k<N-1$

Why is this cool?

$$
N \text {-partite state } \rightsquigarrow \leadsto \bigoplus_{k=0}^{N-1} H^{k}[N \text {-partite state }]
$$

$H^{k}[N$-partite state $]=\left\{\begin{array}{c}\text { tuples of }(k+1) \text {-body operators } \\ \text { exhibiting correlations }\end{array}\right\} /\left\{\begin{array}{c}\text { trivial }\end{array}\right\}, k<N-1$

$$
H^{k}\left(\psi_{1} \otimes \cdots \otimes \psi_{N}\right)=0, k<N-1
$$

Why is this cool?

$$
N \text {-partite state } \rightsquigarrow \not \bigoplus_{k=0}^{N-1} H^{k}[N \text {-partite state }]
$$

$H^{k}[N$-partite state $]=\left\{\begin{array}{c}\text { tuples of }(k+1) \text {-body operators } \\ \text { exhibiting correlations }\end{array}\right\} /\left\{\begin{array}{c}\text { trivial } \\ \text { correlations }\end{array}\right\}, k<N-1$

$$
H^{k}\left(\psi_{1} \otimes \cdots \otimes \psi_{N}\right)=0, k<N-1
$$

$$
\left[\left(\left|0_{\mathrm{A}}\right\rangle\left\langle 0_{\mathrm{A}}\right|,\left|0_{\mathrm{B}}\right\rangle\left\langle 0_{\mathrm{B}}\right|\right)\right] \in H^{0}\left(\left|0_{\mathrm{A}} 0_{\mathrm{B}}\right\rangle+\left|1_{\mathrm{A}} 1_{\mathrm{B}}\right\rangle\right)
$$

Why is this cool?

$$
N \text {-partite state } \rightsquigarrow \checkmark \bigoplus_{k=0}^{N-1} H^{k}[N \text {-partite state }]
$$

$H^{k}[N$-partite state $]=\left\{\begin{array}{c}\text { tuples of }(k+1) \text {-body operators } \\ \text { exhibiting correlations }\end{array}\right\} /\left\{\begin{array}{c}\text { trivial }\end{array}\right\}, k<N-1$

$$
H^{k}\left(\psi_{1} \otimes \cdots \otimes \psi_{N}\right)=0, k<N-1
$$

$$
\left[\left(\left|0_{\mathrm{A}}\right\rangle\left\langle 0_{\mathrm{A}}\right|,\left|0_{\mathrm{B}}\right\rangle\left\langle 0_{\mathrm{B}}\right|\right)\right] \in H^{0}\left(\left|0_{\mathrm{A}} 0_{\mathrm{B}}\right\rangle+\left|1_{\mathrm{A}} 1_{\mathrm{B}}\right\rangle\right)
$$

$$
\left[\left(r_{\mathrm{A}}, r_{\mathrm{B}}\right)\right] \in H^{0}\left(\widehat{\rho}_{\mathrm{AB}}\right) \Longleftrightarrow \operatorname{Tr}\left[\widehat{\rho}_{\mathrm{AB}} x\left(r_{\mathrm{A}} \otimes 1_{\mathrm{B}}-1_{\mathrm{A}} \otimes r_{\mathrm{B}}\right)\right]=0, \forall x \in B\left(\mathcal{H}_{\mathrm{AB}}\right)
$$

Why is this cool?

$$
N \text {-partite state } m \leadsto \bigoplus_{k=0}^{N-1} H^{k}[N \text {-partite state }]
$$

$H^{k}[N$-partite state] $]=\left\{\begin{array}{c}\text { tuples of }(k+1) \text {-body operators } \\ \text { exhibiting correlations }\end{array}\right\} /\left\{\begin{array}{c}\text { correlivalions }\end{array}\right\}, k<N-1$

$$
H^{k}\left(\psi_{1} \otimes \cdots \otimes \psi_{N}\right)=0, k<N-1
$$

$$
\left[\left(\left|0_{A}\right\rangle\left\langle 0_{A}\right|,\left|0_{B}\right\rangle\left\langle 0_{B}\right|\right)\right] \in H^{0}\left(\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle\right)
$$

$$
\left[\left(r_{A}, r_{B}\right)\right] \in H^{0}\left(\widehat{\rho}_{A B}\right) \Longleftrightarrow \underbrace{\operatorname{Tr}\left[\widehat{\rho}_{A B} x\left(r_{A} \otimes 1_{B}-1_{A} \otimes r\right)\right]=0, \forall x \in B\left(\mathcal{H}_{A B}\right)}_{r_{A} \widetilde{A B}^{r_{B}}}
$$

Why is this cool?

$$
N \text {-partite state } \rightsquigarrow \checkmark \bigoplus_{k=0}^{N-1} H^{k}[N \text {-partite state }]
$$

$H^{k}[N$-partite state $]=\left\{\begin{array}{c}\text { tuples of }(k+1) \text {-body operators } \\ \text { exhibiting correlations }\end{array}\right\} /\left\{\begin{array}{c}\text { trivial }\end{array}\right\}, k<N-1$

$$
H^{k}\left(\psi_{1} \otimes \cdots \otimes \psi_{N}\right)=0, k<N-1
$$

$$
\left[\left(\left|0_{\mathrm{A}}\right\rangle\left\langle 0_{\mathrm{A}}\right|,\left|0_{\mathrm{B}}\right\rangle\left\langle 0_{\mathrm{B}}\right|\right)\right] \in H^{0}\left(\left|0_{\mathrm{A}} 0_{\mathrm{B}}\right\rangle+\left|1_{\mathrm{A}} 1_{\mathrm{B}}\right\rangle\right)
$$

$$
\left[\left(r_{\mathrm{A}}, r_{\mathrm{B}}\right)\right] \in H^{0}\left(\widehat{\rho}_{\mathrm{AB}}\right) \Longleftrightarrow \underbrace{\operatorname{Tr}\left[\widehat{\rho}_{\mathrm{AB}} x\left(r_{\mathrm{A}} \otimes 1_{\mathrm{B}}-1_{\mathrm{A}} \otimes r_{\mathrm{B}}\right)\right]=0, \forall x \in B\left(\mathcal{H}_{\mathrm{AB}}\right)}_{\text {" } r_{\mathrm{A}} \text { and } r_{\mathrm{B}} \text { are maxmly. correlated" }}
$$

1-cochains for a tripartite state

$$
\psi \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}} \otimes \mathcal{H}_{\mathrm{C}}
$$

$$
\left[\left(r_{\mathrm{AB}}, r_{\mathrm{AC}}, r_{\mathrm{BC}}\right)\right] \in H^{1}(\psi) \Longleftrightarrow \widetilde{r}_{\mathrm{BC}}+{\widetilde{r_{\mathrm{AB}}}}{ }_{\mathrm{ABC}} \widetilde{\widetilde{r}_{\mathrm{AC}}}
$$

1-cochains for the GHZ state

$$
\psi=|\mathrm{GHZ}\rangle_{3}=\left|0_{\mathrm{A}} 0_{\mathrm{B}} 0_{\mathrm{C}}\right\rangle+\left|1_{\mathrm{A}} 1_{\mathrm{B}} 1_{\mathrm{C}}\right\rangle \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}} \otimes \mathcal{H}_{\mathrm{C}}
$$

Why is this cool?

Cohomology has advantages over mutual information

Why is this cool?

Cohomology has advantages over mutual information

$$
I_{2}\left[\begin{array}{c}
\text { bipartite state } \\
\text { on }\{\mathrm{A}, \mathrm{~B}\}
\end{array}\right]=S_{\mathrm{A}}+S_{\mathrm{B}}-S_{\mathrm{AB}} \in \mathbb{R}_{\geq 0}
$$

Why is this cool?

Cohomology has advantages over mutual information

$$
I_{2}\left[\begin{array}{c}
\text { bipartite state } \\
\text { on }\{\mathrm{A}, \mathrm{~B}\}
\end{array}\right]=S_{\mathrm{A}}+S_{\mathrm{B}}-S_{\mathrm{AB}} \in \mathbb{R}_{\geq 0}
$$

Measures how much information is shared by A and B.

Why is this cool?

Cohomology has advantages over mutual information

$$
I_{2}\left[\begin{array}{c}
\text { bipartite state } \\
\text { on }\{\mathrm{A}, \mathrm{~B}\}
\end{array}\right]=S_{\mathrm{A}}+S_{\mathrm{B}}-S_{\mathrm{AB}} \in \mathbb{R}_{\geq 0}
$$

Measures how much information is shared by A and B.

Multipartite mutual information:

$$
I_{n}=\sum_{T \subseteq P}(-1)^{|T|} S_{T} \in \mathbb{R}
$$

Is a (sometimes unreliable) measure of information shared by every $T \subseteq P$.

Why is this cool?

Cohomology has advantages over mutual information

$$
I_{2}\left[\begin{array}{c}
\text { bipartite state } \\
\text { on }\{\mathrm{A}, \mathrm{~B}\}
\end{array}\right]=S_{\mathrm{A}}+S_{\mathrm{B}}-S_{\mathrm{AB}} \in \mathbb{R}_{\geq 0}
$$

Measures how much information is shared by A and B.

Multipartite mutual information:

$$
I_{n}=\sum_{T \subseteq P}(-1)^{|T|} S_{T} \in \mathbb{R}
$$

Is a (sometimes unreliable) measure of information shared by every $T \subseteq P$.

$$
I_{3}[|000\rangle+|111\rangle]=I_{3}[|001\rangle+|010\rangle+|100\rangle]=0
$$

Why is this cool?

Cohomology has advantages over mutual information

$$
I_{2}\left[\begin{array}{c}
\text { bipartite state } \\
\text { on }\{\mathrm{A}, \mathrm{~B}\}
\end{array}\right]=S_{\mathrm{A}}+S_{\mathrm{B}}-S_{\mathrm{AB}} \in \mathbb{R}_{\geq 0}
$$

Measures how much information is shared by A and B.

Multipartite mutual information:

$$
I_{n}=\sum_{T \subseteq P}(-1)^{|T|} S_{T} \in \mathbb{R}
$$

Is a (sometimes unreliable) measure of information shared by every $T \subseteq P$.

$$
I_{3}[|000\rangle+|111\rangle]=I_{3}[|001\rangle+|010\rangle+|100\rangle]=0
$$

while for $\bullet=0,1$

$$
\begin{aligned}
& H^{\bullet}[|000\rangle+|111\rangle] \neq 0, \\
& H^{\bullet}[|001\rangle+|010\rangle+|100\rangle] \neq 0
\end{aligned}
$$

Slide showing Non-Commutative Geometry \rightsquigarrow State Index as an Euler characteristic.

$$
\rho_{P} \in \operatorname{Dens}\left(\otimes_{p \in P} \mathcal{H}_{p}\right)
$$

Tsallis/Rényi Deformed Mutual Information $\in \mathcal{O}\left(\mathbb{C}_{q} \times \mathbb{C}_{r}\right)$ $\left.q \rightarrow 1\right|_{\nabla}$

Euler Characteristics of Complexes of Vector Spaces $\in \mathbb{Z}$

Mutual Information $\in \mathbb{R}$

Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or probability theory).

Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or probability theory).

No a priori geometry on the set of subsystems/tensor factors. Geometry is emergent.

Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or probability theory).

No a priori geometry on the set of subsystems/tensor factors. Geometry is emergent.

The generality suggests something deep is to be learned.

Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or probability theory).

No a priori geometry on the set of subsystems/tensor factors. Geometry is emergent.

The generality suggests something deep is to be learned.
Possibly new link invariants: $L \subset S^{3}$ a link with N-components; ${ }^{1}$

$$
\psi_{L}:=\mathcal{Z}_{\mathrm{CS}}\left[S^{3}-L\right] \in \mathcal{Z}_{\mathrm{CS}}[\mathbb{T}]^{\otimes N}
$$

Corresponding cohomology, Poincaré polynomials, and state indices are frame-equivariant/independent link invariants.

[^0]Similar/Related work

What's a state?

"von Neumann algebra"
"state" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$. $\rho: R \longrightarrow \mathbb{C}$

What's a state?

"von Neumann algebra"
"state" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$. $\rho: R \longrightarrow \mathbb{C}$

Algebra R of Random Variables	State ρ
$B \mathcal{H}$	$\rho(r)=\operatorname{Tr}_{\mathcal{H}}[\widehat{\rho} r]$

What's a state?

"von Neumann algebra"
"state" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$.

$$
\rho: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	State ρ
$B \mathcal{H}$	$\rho(r)=\operatorname{Tr}_{\mathcal{H}}[\widehat{\rho} r]$
$\operatorname{Fun}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\rho(f)=\sum_{\omega \in \Omega} \underbrace{\mu_{\omega}}_{\mu: \Omega \longrightarrow \mathbb{R}_{\geq 0}} f(\omega)$

What's a state?

"von Neumann algebra"
"state" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$.

$$
\rho: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	State ρ
$B \mathcal{H}$	$\rho(r)=\operatorname{Tr}_{\mathcal{H}}[\widehat{\rho} r]$
$\operatorname{Fun}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\rho(f)=\sum_{\omega \in \Omega} \underbrace{\mu_{\omega}}_{\mu: \Omega \longrightarrow \mathbb{R}_{\geq 0}} f(\omega)$
$L^{\infty}(\mathbb{X})$	$\rho(f)=\int_{\mathbb{X}} f d \mu$

What's a state?

"von Neumann algebra"
"state" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$.

$$
\rho: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	State ρ
BH	$\rho(r)=\operatorname{Tr}_{\mathcal{H}}[\widehat{\rho} r]$
$\operatorname{Fun}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\rho(f)=\sum_{\omega \in \Omega} \underbrace{\mu_{\omega}}_{\mu: \Omega \longrightarrow \mathbb{R} \geq 0} f(\omega)$
$L^{\infty}(\mathbb{X})$	$\rho(f)=\int_{\mathbb{X}} f d \mu$
$\prod_{i=1}^{n} \operatorname{End}\left(\mathcal{H}_{i}\right)$	$\rho\left(r_{1}, \cdots, r_{n}\right)=\sum_{i} \operatorname{Tr}_{\mathcal{H}_{i}}\left[\widehat{\rho}^{(i)} r_{i}\right]$
$\begin{gathered} \text { State on } \\ \prod_{i} E n d\left(\mathcal{H}_{i}\right) \end{gathered} \leftrightarrow \stackrel{\text { Tuple of density states }}{\left(\widehat{\rho}^{(1)}, \ldots, \widehat{\rho}^{(n)}\right)}$	

What's a state?

"von Neumann algebra"
"state" $=($ normal $)$ positive linear functional on a $\overbrace{W^{*} \text {-algebra }} R$.

$$
\rho: R \longrightarrow \mathbb{C}
$$

Algebra R of Random Variables	State ρ
BH	$\rho(r)=\operatorname{Tr}_{\mathcal{H}}[\widehat{\rho} r]$
$\operatorname{Fun}_{\mathbb{C}}(\Omega) \cong \mathbb{C}^{\|\Omega\|}$	$\rho(f)=\sum_{\omega \in \Omega} \underbrace{\mu_{\omega}}_{\mu \rightarrow \mathbb{R} \geq 0} f(\omega)$
$L^{\infty}(\mathbb{X})$	$\rho(f)=\int_{\mathbb{X}} f d \mu$
$\prod_{i=1}^{n} \operatorname{End}\left(\mathcal{H}_{i}\right)$	$\rho\left(r_{1}, \cdots, r_{n}\right)=\sum_{i} \operatorname{Tr}_{\mathcal{H}_{i}}\left[\widehat{\rho}^{(i)} r_{i}\right]$
$\begin{gathered} \text { State on } \\ \prod_{i} \text { End }\left(\mathcal{H}_{i}\right) \end{gathered} \leftrightarrow \begin{gathered} \text { Tuple of density states } \\ \left(\widehat{\rho}^{(1)}, \cdots, \widehat{\rho}^{(n)}\right) \end{gathered}$	

What's a Bipartite State? (roughly)

$$
\text { "bipartite state" }=\begin{aligned}
& R_{\mathrm{A}}, R_{\mathrm{B}} \text { a pair of algebras } \\
& \rho: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \xrightarrow{+} \mathbb{C} \text { a state }
\end{aligned}
$$

What's a Bipartite State? (roughly)

$$
\text { "bipartite state" }=\begin{aligned}
& R_{\mathrm{A}}, R_{\mathrm{B}} \text { a pair of algebras } \\
& \rho: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \xrightarrow{+} \mathbb{C} \text { a state }
\end{aligned}
$$

We have homomorphisms

$$
\begin{aligned}
& \epsilon_{\mathrm{A}}: R_{\mathrm{A}} \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} \\
& a \longmapsto a \otimes 1 \\
& \epsilon_{\mathrm{B}}: R_{\mathrm{B}} \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} \\
& b \longmapsto 1 \otimes b
\end{aligned}
$$

What's a Bipartite State? (roughly)

$$
\text { "bipartite state" }=\begin{aligned}
& R_{\mathrm{A}}, R_{\mathrm{B}} \text { a pair of algebras } \\
& \rho: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \xrightarrow{\longrightarrow} \mathbb{C} \text { a state }
\end{aligned}
$$

We have homomorphisms

$$
\begin{array}{rlrl}
\epsilon_{\mathrm{A}}: R_{\mathrm{A}} & \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} & \epsilon_{\mathrm{B}}: R_{\mathrm{B}} & \longrightarrow R_{\mathrm{A}} \otimes R_{\mathrm{B}} \\
& a \longmapsto a \otimes 1 & b & \longmapsto 1 \otimes b
\end{array}
$$

Giving us the reduced states ("partial traces" / "partial measures")

$$
\begin{aligned}
\rho_{\mathrm{A}}:=\rho \circ \epsilon_{\mathrm{A}}: R_{\mathrm{A}} & \longrightarrow \mathbb{C} & \rho_{\mathrm{B}}:=\rho \circ \epsilon_{\mathrm{B}}: R_{\mathrm{B}} & \longrightarrow \mathbb{C} \\
& a \longmapsto \rho(a \otimes 1) & & b
\end{aligned}>\rho(1 \otimes b)
$$

What is Factorizability?

Bipartite ρ is factorizable if $\rho(1) \rho=\rho_{\mathrm{A}} \otimes \rho_{\mathrm{B}}$.

What is Factorizability?

Bipartite ρ is factorizable if $\rho(1) \rho=\rho_{\mathrm{A}} \otimes \rho_{\mathrm{B}}$.
$\psi \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}$ is factorizable

What is Factorizability?

Bipartite ρ is factorizable if $\rho(1) \rho=\rho_{\mathrm{A}} \otimes \rho_{\mathrm{B}}$.
$\psi \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}$ is factorizable

$$
\mu: X \times Y \longrightarrow[0,1]
$$

a probability measure describes independent random variables.

$$
\begin{gathered}
\operatorname{Tr}_{\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}}\left[\psi \otimes \psi^{\vee}(-)\right] \\
\text { is factorizable }
\end{gathered}
$$

its expectation value is factorizable

What is Factorizability?

Bipartite ρ is factorizable if $\rho(1) \rho=\rho_{\mathrm{A}} \otimes \rho_{\mathrm{B}}$.
$\psi \in \mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}$ is factorizable

$$
\mu: X \times Y \longrightarrow[0,1]
$$

a probability measure describes independent random variables.

$$
\begin{gathered}
\operatorname{Tr}_{\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}}\left[\psi \otimes \psi^{\vee}(-)\right] \\
\text { is factorizable }
\end{gathered}
$$

its expectation value is factorizable

What's a Multipartite State?

$$
\text { "multipartite state" " }=" \begin{gathered}
\left(R_{p}\right)_{p \in P} \text { tuple of algebras } \\
\rho: \bigotimes_{p \in P} R_{p} \longrightarrow \mathbb{C} \text { a state }
\end{gathered}
$$

For any subset $T \subseteq P$ we have algebras $R_{T}:=\bigotimes_{t \in T} R_{t}\left(R_{\emptyset}=\mathbb{C}\right)$, and maps

$$
\epsilon_{T}: R_{T} \longrightarrow R_{P}
$$

Define the reduced states

$$
\rho_{T}:=\rho \circ \epsilon_{T}: R_{T} \rightarrow \mathbb{C}
$$

Why Geometry? Homological Obstructions, that's why

$$
\rho: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \longrightarrow \mathbb{C}
$$

Why Geometry? Homological Obstructions, that's why

$$
\rho: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \longrightarrow \mathbb{C}
$$

 all global data comes from gluing local data: $\rho\left(\sum_{i j} r_{\mathrm{A}}^{i} \otimes r_{\mathrm{B}}^{j}\right)=$

$$
\frac{1}{\rho(1)} \sum_{i j} \rho_{\mathrm{A}}\left(r_{\mathrm{A}}^{i}\right) \rho_{\mathrm{B}}\left(r_{\mathrm{B}}^{j}\right)
$$

Why Geometry? Homological Obstructions, that's why

$$
\rho: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \longrightarrow \mathbb{C}
$$

16
$H^{0}(\rho)=\left\{\left(r_{\mathrm{A}}, r_{\mathrm{B}}\right) \in R_{\mathrm{A}} \times r_{\mathrm{B}}: \rho(1) \rho\left(r_{\mathrm{A}} \otimes r_{\mathrm{B}}\right) \neq \rho_{\mathrm{A}}\left(r_{\mathrm{A}}\right) \rho_{\mathrm{B}}\left(r_{\mathrm{B}}\right)\right\}$

Why Geometry? Homological Obstructions, that's why

$$
\rho: R_{\mathrm{A}} \otimes R_{\mathrm{B}} \longrightarrow \mathbb{C}
$$

$H^{0}[\rho]=\left\{\left(r_{\mathrm{A}}, r_{\mathrm{B}}\right) \in R_{\mathrm{A}} \times R_{\mathrm{B}}: r_{\mathrm{A}}\right.$ and r_{B} are mxmly. correlated $\} / \mathbb{C}\langle(1,1)\rangle$

Multipartite Measures

$$
\mu: X \times Y \rightarrow \mathbb{R}_{\geq 0}
$$

Commutative Geometry
encoding non-locel correlations

$$
G_{\mu}=\begin{aligned}
& x_{1} \longmapsto y_{1} \\
& x_{2} \longmapsto \\
& x_{3} \longmapsto \\
& y_{2} \\
& y_{3}
\end{aligned}
$$

Multipartite Measures

$$
\mu: X \times Y \rightarrow \mathbb{R}_{\geq 0}
$$

Commutative Geometry
encoding non-locel correlations

$$
G_{\mu}=\begin{aligned}
& x_{1} \bullet \\
& x_{2} \longmapsto y_{1} \\
& x_{3} \longmapsto
\end{aligned} y_{2}
$$

Multipartite
Measures

$$
\mu: X \times Y \rightarrow \mathbb{R}_{\geq 0}
$$

Commutative Geometry encoding non-locel correlations

$$
\begin{aligned}
& G_{\mu}=\stackrel{x_{1}}{x_{2}} \longmapsto y_{1} \\
& x_{3} \longmapsto y_{2} \\
& H^{0}\left(G_{\mu} ; \mathbb{C}\right) \cong \mathbb{C}^{3}
\end{aligned}
$$

Multipartite Measures
$\mu: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

Multipartite Measures
$\mu: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

non-trivial" "non-local" maximal correlations

Commutative
Geometry
enceding non-locel correlations

$$
G_{\mu}=\begin{aligned}
& x_{1} \longmapsto \\
& x_{2} \longmapsto y_{1} \\
& x_{3} \longmapsto \\
& y_{2} \\
& y_{3}
\end{aligned}
$$

$$
H^{\circ}\left(G_{\mu}, \mathbb{C}\right)=\mathbb{C}\left\langle\left(1_{x_{1}} 1_{y_{1}}\right),\left(1_{x_{2}} 1_{y_{2}}\right),\left(1_{x_{3}}, 1_{y_{3}}\right\rangle\right.
$$

$$
\tilde{H}^{0}\left(G_{r} ; \mathbb{C}\right)=H^{0}\left(G_{u} ; \mathbb{C}\right) / \mathbb{C}\left\langle\left(\sum I_{x_{i}}, \sum I_{y_{i}}\right)\right\rangle
$$

Pries of Canstant randem Vers.

Multipartite Mersures
$\mu: X \times Y \rightarrow \mathbb{R}_{\geq 0}$

eneoding non-locel correlations

$$
\begin{aligned}
& H^{0}\left(G_{\mu}, \mathbb{C}\right) \cong \mathbb{C} \\
& \tilde{H}^{0}\left(G_{\mu} ; \mathbb{C}\right)=0
\end{aligned}
$$

Mutual Info. as an Euler Char.

Mutual Information:

$$
I_{2}\left(\rho_{\mathrm{AB}}\right)=S\left(\rho_{\mathrm{A}}\right)+S\left(\rho_{\mathrm{B}}\right)-S\left(\rho_{\mathrm{AB}}\right)
$$

Mutual Info. as an Euler Char.

Mutual Information:

$$
I_{2}\left(\rho_{\mathrm{AB}}\right)=S\left(\rho_{\mathrm{A}}\right)+S\left(\rho_{\mathrm{B}}\right)-S\left(\rho_{\mathrm{AB}}\right)
$$

Recall: States on $\prod_{i=1}^{n} \operatorname{End}\left(\mathcal{H}_{i}\right) \longleftrightarrow$ tuples of density states $\left(\widehat{\rho}^{(1)}, \cdots, \widehat{\rho}^{(n)}\right)$

Mutual Info. as an Euler Char.

Mutual Information:

$$
I_{2}\left(\rho_{\mathrm{AB}}\right)=S\left(\rho_{\mathrm{A}}\right)+S\left(\rho_{\mathrm{B}}\right)-S\left(\rho_{\mathrm{AB}}\right)
$$

Recall: States on $\prod_{i=1}^{n} \operatorname{End}\left(\mathcal{H}_{i}\right) \longleftrightarrow$ tuples of density states $\left(\widehat{\rho}^{(1)}, \cdots, \widehat{\rho}^{(n)}\right)$

$$
S\left[\left(\widehat{\rho}^{(1)}, \cdots, \widehat{\rho}^{(n)}\right)\right]=\sum_{i=1}^{n} \underbrace{\operatorname{Tr}\left[\widehat{\rho}^{(i)} \log \widehat{\rho}^{(i)}\right]}
$$

Multipartite Mutual information:

$$
\begin{gathered}
l_{|P|}\left(\rho_{P}\right)=\sum_{\emptyset T \subseteq P}(-1)^{|T|} S\left(\rho_{T}\right) \\
l_{|Q \cup R|}\left(\rho_{Q} \otimes \rho_{R}\right)=0
\end{gathered}
$$

Why Geometry? Mutual Info looks like an Euler
 Characteristic

C a sufficiently nice \otimes-category with all coproducts \oplus
An Euler characteristic (valued in a ring R) is an assignment that takes in any object A of \mathbf{C} and outputs $\chi(A) \in R$ such that:
$\chi(A)$ only depends on A up to iso.
$\chi(A \oplus B)=\chi(A)+\chi(B)$
$\chi(A \otimes B)=\chi(A) \chi(B)$
equivalently χ is a homomorphism

$$
\chi: K_{0}(\mathbf{C}) \rightarrow R
$$

for some ring R.

$$
I\left(\rho_{P} \otimes \varphi_{Q}\right) \equiv 0 \text { not } I_{P}\left(\rho_{P}\right) I\left(\varphi_{Q}\right)
$$

The GNS Functor

Recall the GNS construction:

$$
\rho: A \rightarrow \mathbb{C} \stackrel{\operatorname{GNS}_{A}}{\longmapsto}\left(L_{\rho}^{2}\left[A / \mathfrak{I}_{\rho}\right],[1]\right)
$$

The GNS Functor

Recall the GNS construction:

$$
\rho: A \rightarrow \mathbb{C} \stackrel{\operatorname{GNS}_{A}}{\longmapsto}\left(L_{\rho}^{2}\left[A / \mathfrak{I}_{\rho}\right],[1]\right)
$$

This is secretly a functor

$$
\operatorname{GNS}_{A}: \text { State }_{A} \rightarrow \boldsymbol{\operatorname { R e p }}_{A}
$$

	State $_{A}$	Rep_{A}	
Objects	Positive linear funls $\rho: R \xrightarrow{C}$	*-representations of A	
Morphisms	$\begin{gathered} \rho \underset{\substack{\\|}}{\rho \leq C \varphi \text { for some } C>0} \end{gathered}$	(bounded) intertwiners	

The Category of States

The Category of States

The Category of States

The Category of States

The Category of States

$$
\text { GNS : } \text { State }^{\mathrm{op}} \longrightarrow \text { Rep }
$$

	State	Rep
Objects	(R, ρ)	Algebras and "left modules" $\left(R,{ }_{R} M\right)$
Morphisms	"duals" of algebra maps playing nicely with states	Algebra maps + intertwiners playing nicely together
(co)products	Classical sum $(A, \rho) \boxplus(B, \varphi)=(A \times B, \rho \times \varphi)$	Products $(A, M) \times(B, N)=$ $(\mathrm{A} \times B, M \times N)$

The Category of States

$$
\text { GNS : } \text { State }^{\mathrm{op}} \longrightarrow \text { Rep }
$$

State	Rep			
Morphisms	(R, ρ)	Algebras and "left modules" $\left(R,{ }_{R} M\right)$		
"duals" of algebra maps				
playing nicely with states			\quad	Algebra maps + intertwiners
:---:				
playing nicely together				

(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor
$\rho:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ State

(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor
$\underline{\rho}:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ State

$$
T \longmapsto\left(R_{T}, \rho_{T}\right)
$$

(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor
$\underline{\rho}:$ Subsets $(P)^{\mathrm{op}} \longrightarrow$ State

$$
\begin{aligned}
T & \longmapsto\left(R_{T}, \rho_{T}\right) \\
(T \subseteq U) & \longmapsto\left[(-) \otimes 1_{U \backslash T}: R_{T} \rightarrow R_{U}\right]^{\wedge}: \rho_{U} \longrightarrow \rho_{T}
\end{aligned}
$$

(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor
$\underline{\rho}$: Subsets $(P)^{\text {op }} \longrightarrow$ State

$$
\begin{aligned}
T & \longmapsto\left(R_{T}, \rho_{T}\right) \\
(T \subseteq U) & \longmapsto \underbrace{\left[(-) \otimes 1_{U \backslash T}: R_{T} \rightarrow R_{U}\right]^{\wedge}: \rho_{U} \longrightarrow \rho_{T}}_{\text {"partial trace over } U \backslash T^{\prime \prime}}
\end{aligned}
$$

(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor

$$
\begin{aligned}
\underline{\rho}: \text { Subsets }(P)^{\mathrm{op}} & \longrightarrow \text { State } \\
T & \longmapsto\left(R_{T}, \rho_{T}\right) \\
(T \subseteq U) & \longmapsto \underbrace{\left[(-) \otimes 1_{U \backslash T:} R_{T} \rightarrow R_{U}\right]^{\wedge}: \rho_{U} \longrightarrow \rho_{T}}_{\text {"partial trace over } U \backslash T^{\prime \prime}}
\end{aligned}
$$

Can make this covariant using complementation on sets, then use Čech theory to construct a "simplicial state"

(Non-Comm.) Geometry from a Multipartite State

 GNS

$$
\underbrace{\operatorname{GNN}\left(\rho_{0}\right)}_{\mathrm{cC}} \rightarrow \prod_{|T|=1}^{\operatorname{GNS}\left(\rho_{T}\right) \rightrightarrows} \prod_{|T|=2} \operatorname{GNS}\left(\rho_{T}\right) \xrightarrow[\rightarrow]{\rightrightarrows} \underset{\rightarrow|T|=N-1}{\rightrightarrows} \prod_{\rightarrow} \operatorname{GNS}\left(\rho_{T}\right) \underset{\underset{\rightarrow}{\rightrightarrows}}{\vec{G}} \operatorname{GNS}\left(\rho_{P}\right)
$$

$$
0 \rightarrow \mathbb{C} \xrightarrow{d^{-1}} \prod_{|T|=1} \operatorname{GNS}\left(\rho_{T}\right) \xrightarrow{d^{0}} \prod_{|T|=2} \operatorname{GNS}\left(\rho_{T}\right) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{N-2}} \prod_{|T|=N-1} \operatorname{GNS}\left(\rho_{T}\right) \xrightarrow{d^{N-1}} \operatorname{GNS}\left(\rho_{P}\right) \rightarrow 0
$$

Summary

Mutual information (and its deformations) of a multipartite state emerge naturally from the Euler characteristic (the "state index") of some canonically associated non-commutative "space."
The precise operators/random variables capturing non-local correlations are captured by cohomology.
Similar to how cohomology is a finer invariant than an Euler characteristic, cohomology is finer than mutual information.

Software

Software computing cohomology/Poincaré polynomials is available at github.com/tmainero.

[^0]: ${ }^{1}$ Based on conversations with G. Moore. See work of Swingle and Balasubramanian, et. al.

