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Why is this cool?

N-partite state
N−1⊕

k=0

Hk [N-partite state]

Hk [N-partite state] =
{

tuples of (k + 1)-body operators
exhibiting correlations

}/
{ trivial

correlations}, k < N − 1

Hk(ψ1 ⊗ · · · ⊗ ψN) = 0, k < N − 1

[(|0A〉 〈0A| , |0B〉 〈0B|)] ∈ H0(|0A0B〉+ |1A1B〉)

[(rA, rB)] ∈ H0(ρ̂AB)⇐⇒ Tr[ρ̂ABx(rA ⊗ 1B − 1A ⊗ rB)] = 0, ∀x ∈ B(HAB)︸ ︷︷ ︸
rA∼

AB
rB

“rA and rB are maxmly. correlated”
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1-cochains for a tripartite state

ψ ∈ HA ⊗HB ⊗HC

A B

C

rBC

rAB
rAC

[(rAB, rAC, rBC)] ∈ H1(ψ)⇐⇒ r̃BC + r̃AB ∼
ABC

r̃AC
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1-cochains for the GHZ state

ψ = |GHZ〉3 = |0A0B0C〉+ |1A1B1C〉 ∈ HA ⊗HB ⊗HC

A B

C




0 0 0 0
0 0 0 −1
−1 0 0 0
0 0 0 0







0 0 0 2
0 0 0 0
0 0 0 0
2 0 0 0







0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0
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Why is this cool?

Cohomology has advantages over mutual information

I2[bipartite state
on {A, B} ] = SA + SB − SAB ∈ R≥0

Measures how much information is shared by A and B.

Multipartite mutual information:

In =
∑

T⊆P
(−1)|T |ST ∈ R

Is a (sometimes unreliable) measure of information shared by every T ⊆ P.

I3[|000〉+ |111〉] = I3[|001〉+ |010〉+ |100〉] = 0

while for • = 0, 1

H•[|000〉+ |111〉] 6= 0,

H•[|001〉+ |010〉+ |100〉] 6= 0
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Slide showing Non-Commutative Geometry  State Index as an Euler
characteristic.
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ρP ∈ Dens(⊗p∈PHp)

State Index ∈ O(Cα × Cq × Cr )

Tsallis/Rényi Deformed Mutual Information
∈ O(Cq × Cr )

Mutual Information ∈ R

Euler Characteristics of Complexes of
Vector Spaces ∈ Z

α
→

0

×
1

r(
q−

1)

q → 1

q →
0

α, r ∈ Z
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Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.

The generality suggests something deep is to be learned.

Possibly new link invariants: L ⊂ S3 a link with N-components;1

ψL := ZCS[S3 − L] ∈ ZCS[T]⊗N

Corresponding cohomology, Poincaré polynomials, and state indices
are frame-equivariant/independent link invariants.

1Based on conversations with G. Moore. See work of Swingle and Balasubramanian,
et. al.
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are frame-equivariant/independent link invariants.

1Based on conversations with G. Moore. See work of Swingle and Balasubramanian,
et. al.

9



Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.

The generality suggests something deep is to be learned.

Possibly new link invariants: L ⊂ S3 a link with N-components;1

ψL := ZCS[S3 − L] ∈ ZCS[T]⊗N

Corresponding cohomology, Poincaré polynomials, and state indices
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What’s a state?

“state” = (normal) positive linear functional on a

“von Neumann algebra”︷ ︸︸ ︷
W ∗-algebra R.

ρ : R −→ C

Algebra R
of Random Variables

State ρ

BH ρ(r) = TrH[ρ̂r ]

FunC(Ω) ∼= C|Ω| ρ(f ) =
∑

ω∈Ω µω︸︷︷︸
µ:Ω−→R≥0

f (ω)

L∞(X) ρ(f ) =
∫
X
fdµ

∏n
i=1 End(Hi ) ρ(r1, · · · , rn) =

∑
i TrHi

[ρ̂(i)ri ]

State on∏
i End(Hi )↔

Tuple of density states
(ρ̂(1), · · · , ρ̂(n))

State on∏n
i=1 C ↔

Tuple of non-negative reals
(µ(1), · · · , µ(n))
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What’s a Bipartite State? (roughly)

“bipartite state” =
RA, RB a pair of algebras

+
ρ : RA ⊗ RB −→ C a state

We have homomorphisms

εA : RA −→ RA ⊗ RB εB : RB −→ RA ⊗ RB

a 7−→ a⊗ 1 b 7−→ 1⊗ b

Giving us the reduced states (“partial traces”/“partial measures”)

ρA := ρ ◦ εA : RA −→ C ρB := ρ ◦ εB : RB −→ C
a 7−→ ρ(a⊗ 1) b 7−→ ρ(1⊗ b)
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What is Factorizability?

Bipartite ρ is factorizable if ρ(1)ρ = ρA ⊗ ρB.

ψ ∈ HA ⊗ HB

is factorizable
TrHA⊗HB

[ψ ⊗ ψ∨(−)]
is factorizable

µ : X × Y −→ [0, 1]
a probability measure describes
independent random variables.

its expectation value
is factorizable

13
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What’s a Multipartite State?

“multipartite state” “=”
(Rp)p∈P tuple of algebras

+
ρ :

⊗
p∈P Rp −→ C a state

For any subset T ⊆ P we have algebras RT :=
⊗

t∈T Rt (R∅ = C), and
maps

εT : RT −→ RP

Define the reduced states

ρT := ρ ◦ εT : RT → C

14



Why Geometry? Homological Obstructions, that’s why

ρ : RA ⊗ RB −→ C

Factorizability

Descent of data to subsystems:
all global data comes from gluing
local data: ρ(

∑
ij r

i
A ⊗ rjB) =

1
ρ(1)

∑
ij ρA(r

i
A)ρB(r

j
B).

Failure to Factorize
Obstruction to descent: ρ(rA⊗rB) 6=

1
ρ(1)ρA(rA)ρB(rB) for some (rA, rB)

15
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Mutual Info. as an Euler Char.

Mutual Information:

I2(ρAB) = S(ρA) + S(ρB)− S(ρAB)

Recall: States on
∏n

i=1 End(Hi )←→ tuples of density states
(ρ̂(1), · · · , ρ̂(n))

S [(ρ̂(1), · · · , ρ̂(n))] =
n∑

i=1

Tr[ρ̂(i) log ρ̂(i)]︸ ︷︷ ︸

Multipartite Mutual information:

I|P|(ρP) =
∑

∅T⊆P

(−1)|T |S(ρT )

I|Q∪R|(ρQ ⊗ ρR) = 0

17
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Recall: States on
∏n

i=1 End(Hi )←→ tuples of density states
(ρ̂(1), · · · , ρ̂(n))

S [(ρ̂(1), · · · , ρ̂(n))] =
n∑

i=1

Tr[ρ̂(i) log ρ̂(i)]︸ ︷︷ ︸
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Why Geometry? Mutual Info looks like an Euler
Characteristic

C a sufficiently nice ⊗-category with all coproducts ⊕
An Euler characteristic (valued in a ring R) is an assignment that
takes in any object A of C and outputs χ(A) ∈ R such that:

χ(A) only depends on A up to iso.

χ(A⊕ B) = χ(A) + χ(B)

χ(A⊗ B) = χ(A)χ(B)

equivalently χ is a homomorphism

χ : K0(C)→ R

for some ring R.
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I (ρP ⊗ ϕQ) ≡ 0 not IP(ρP)I (ϕQ)
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The GNS Functor

Recall the GNS construction:

ρ : A→ C GNSA7−−−→ (L2
ρ[A/Iρ], [1])

This is secretly a functor

GNSA : StateA → RepA

StateA RepA

Objects Positive linear funls
ρ : R −→ C ∗-representations of A

Morphisms
ρ −→ ϕ
m

ρ ≤ Cϕ for some C > 0
(bounded) intertwiners
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The Category of States
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The Category of States

GNS : Stateop −→ Rep

State Rep

Objects (R, ρ) Algebras and “left modules”
(R, RM)

Morphisms “duals” of algebra maps
playing nicely with states

Algebra maps + intertwiners
playing nicely together

(co)products Classical sum
(A, ρ) � (B, ϕ) = (A× B, ρ× ϕ)

Products
(A,M)× (B,N) =

(A ×B,M × N)

GNS(�) =
∏
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(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor

ρ : Subsets(P)op −→ State

T 7−→ (RT , ρT )

(T ⊆ U) 7−→ [(−)⊗ 1U\T : RT → RU ]∧ : ρU −→ ρT︸ ︷︷ ︸
“partial trace over U\T”

Can make this covariant using complementation on sets, then use Čech
theory to construct a “simplicial state”

ρ∅︸︷︷︸
(C,ρ(1))

←− �
|T |=1

ρT
←−
←−�
|T |=2

ρT
←−
←−
←−
· · ·

←−
←−

...
←−︸︷︷︸

N − 1 arrows

�
|T |=N−1

ρT

←−
←−

...
←−︸︷︷︸

N arrows
“partial traces”

ρP
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(Non-Comm.) Geometry from a Multipartite State

ρ∅ ←− �
|T |=1

ρT
←−
←−�
|T |=2

ρT
←−
←−
←−
· · ·
←−
←−

...
←−
�

|T |=N−1

ρT

←−
←−

...
←−
ρP

GNS(ρ∅)︸ ︷︷ ︸
CC

−→
∏

|T |=1

GNS(ρT )−→−→
∏

|T |=2

GNS(ρT )
−→
−→
−→
· · ·
−→
−→

...
−→

∏

|T |=N−1

GNS(ρT )

−→
−→

...
−→

GNS(ρP)

0→ C d−1

−→
∏

|T |=1

GNS(ρT )
d0

−→
∏

|T |=2

GNS(ρT )
d1

−→ · · · d
N−2

−→
∏

|T |=N−1

GNS(ρT )
dN−1

−→ GNS(ρP)→ 0

GNS

Forget Algebra
+Alternating sum

of arrows
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Summary

Mutual information (and its deformations) of a multipartite state
emerge naturally from the Euler characteristic (the “state index”) of
some canonically associated non-commutative “space.”

The precise operators/random variables capturing non-local
correlations are captured by cohomology.

Similar to how cohomology is a finer invariant than an Euler
characteristic, cohomology is finer than mutual information.
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Software

Software computing cohomology/Poincaré polynomials is available at
github.com/tmainero.

Phase 1

Insert N-partite Density
State ρ̂{1,··· ,N} ∈
Dens(

⊗N
i=1Hi )

Phase 2

?

Phase 3

Profit:
Degree N − 1 poly-

nomials with positive
integer coefficients
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